• Title/Summary/Keyword: screen thickness

Search Result 237, Processing Time 0.029 seconds

Comparison of Average Glandular Dose in Screen-Film and Digital Mammography Using Breast Tissue-Equivalent Phantom (유방조직등가 팬텀을 이용한 Screen-Film과 Digital Mammography에서의 평균 유선선량)

  • Shin, Gwi-Soon;Kim, Jung-Min;Kim, You-Hyun;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2007
  • In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate(IP). We measured average glandular doses(AGD) in screen-film mammography(SFM) system with slow screen-film combination, computed mammography(CM) system, indirect digital mammography(IDM) system and direct digital mammography(DDM) system using brest tissue-equivalent phantom(glandularity 30%, 50% and 70%). The results were shown as follows : AGD values for DDM system were highest than those for other systems. Although automatic exposure control(AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter(Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in oder to estimate a patient radiation dose.

  • PDF

A Study on the Heat Transfer Performance of a Heat Spreader (히트 스프레더의 열전달 성능에 관한 연구)

  • Kim, Hyun-Tae;Lee, Yong-Duck;Oh, Min-Jung;Jang, Sung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1258-1263
    • /
    • 2004
  • The present study proposes a new structure for a heat spreader which could embody a thin thickness, any shapes and high heat flux per unit area. It is on the structure for the formation of vapor passages and the support of the case of the heat spreader. A screen mesh is used as the one. To verify the validity of the one, the heat spreader of 1.4mm and 1.6mm thickness was made with 14 mesh and 100 mesh number. In this paper, The performance test of heat spreader conducted in order to compare with the heat transfer performance of conventional heat pipe. As the results, The heat spreader has excellent cooling and heat transfer performance.

  • PDF

Structural Properties of BSCT Thick Films with variation of Sintering Temperature (소결온도에 따른 BSCT 후막의 구조적 특성)

  • Park, Sang-Man;Lee, Sung-Gap;Yun, Sang-Eun;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.212-213
    • /
    • 2006
  • BSCT(60/30/10) powder specimens were fabricated by sol-gel method and BSCT thick films were fabricated by screen-printing method. The coating and drying procedure was repeated 6 times. Then the structural properties as a function of the sintering temperature. As a result of the TG-DTA, exothermic peak was observed at around $670^{\circ}C$ due to the crystalline phase. The BSCT sintered at $1430^{\circ}C$ showed the cubic perovskite structure. The prosity and thickness of the BSCT thick films was decreased with sintering temperature. The thickness of BSCT thick films at $1420^{\circ}C$ was approximately $40{\mu}m$.

  • PDF

Thin Metal Meshes for Touch Screen Panel Prepared by Photolithography (포토리소그래피 공정으로 제작된 터치스크린패널용 금속메시)

  • Kim, Seo-Han;Song, Pung-Keun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • The metal mesh films with thickness of 1.0, 1.5, $2.0{\mu}m$ were prepared by photolithography using Ag, Al, and Cu metals. Every metal films were showed C(111) preferred orientation and Ag showed the lowest resistivity and followed by Al and Cu. The transmittance of almost films were higher than 90%. But, the Ag film with thickness of $2.0{\mu}m$ was delaminated during photolithography process due to low adhesion. So, Cu and Ti metal films were introduced under Ag film to improve adhesion property. The Cu film showed higher adhesion properties compared to Ti film. Furthermore, the Ti films that deposited on Ag film showed higher acid resistance.

The Study on Characterization of Current-limiting with Diffusion Thickness of High-Tc Superconductor Thick Film (고온초전도후막의 확산두께에 따른 전류제한 특성연구)

  • Im, Seong-Hun;Gang, Hyeong-Gon;Han, Tae-Hui;Mo, Chang-Ho;Im, Seok-Jin;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.210-218
    • /
    • 2000
  • For the fabrication of $YBa_2Cu_3O_x$ thick film, a substrate of $Y_2BaCuO_5$ was fabricated by adding $CeO_2$ into $Y_2BaCuO_5$ and two types of doping materials added with binder material were prepared. Each doping material was patterned on $Y_2BaCuO_5$substrate by the screen printing method and then was annealed at the temperature with a few step. It could be observed by X-ray diffraction patterns and SEM photographs that through the diffusion process of the $Y_2BaCuO_5$ and each doping material, the $YBa_2Cu_3O_x$ phase was formed. And with n additive of $CeO_2$ the thickness of formed $YBa_2Cu_3O_x$decreased. From the experiment of current limiting on thick film, the sample with thiner thickness of $YBa_2Cu_3O_x$ showed the more effective characteristics of current limiting.

  • PDF

Improved Electrical and Optical Properties of ITO Films by Using Electron Beam Irradiated Sputter

  • Wie, Sung Min;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.407-408
    • /
    • 2013
  • Thin transparent conductive oxides (TCOs) having a thickness lower than 30 nm have been widely usedin touch screen panels. However the resistivity of the TCO films significantly increases as the thickness decreases, due to the poor crystallinity at very thin thickness of TCO films. In this study, we have investigated the effect of electron beam irradiation during the sputtering on the electrical properties and transmittance of 30 nm-thick ITO films, which have a different SnO2 atomic percent, prepared by magnetron sputtering at room temperature. Fig. 1 shows the variation of resistivity of ITO films with a different SnO2 atomic percent for both the normal ITO films and electron beam irradiated ITO films. As shows in Fig. 1, the electron beam irradiation to the ITO (SnO2 weight percent 10%) films during the sputtering resulted in a significantly decreased in resistivity from $7.4{\times}10^{-4}{\Omega}-cm$ to $1.5{\times}10^{-4}{\Omega}-cm$ and it also increased in transmittance from 84% to 88% at a wavelength of 550 nm. These results can be attributed to energy transfer from electron to ad-atoms of ITO films during the electron beam irradiated sputtering, which can enhance the crystallinity of 30 nm-thick ITO films. It is strongly indicate that electron beam irradiation can greatly improve the electrical properties and transmittance of very thin ITO films for touch screen panels, flexible displays and solar cells.

  • PDF

Optimization of Screen Printing Process in Crystalline Silicon Solar Cell Fabrication (결정질 실리콘 태양전지의 스크린 프린팅 공정 최적화 연구)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Choi, Sung-Jin;Lim, Kee-Joe;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.116-120
    • /
    • 2011
  • In this paper, we studied the optimization of the screen pringting method for crystalline silicon solar cell fabrication. The 156 * 156 mm2 p-type silicon wafers with $200{\mu}m$ thickness and $0.5-3{\Omega}cm$ resistivity were used after texturing, doping, and passivation. Screen printing method is a common way to make the c-Si solar cell with low-cost and high-efficiency. We studied the optimized condition for screen printing with crystalline silicon solar cell as changing the printing direction (finger line or bus bar), finger width, and mesh angle. As a result, the screen printing with finger line direction showed higher finger height and better conversion efficiency, compared with one with bus bar direction. The experiments with various finger widths and mesh angles were also carried out. The characteristics of solar cells was obtained by measuring light current-voltage, optical microscope and electroluminescence.

  • PDF

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Fabrication of Anti-Reflection Thin Film by Using Screen Printing Method (Screen Printing법을 이용한 반사방지막 제조)

  • Choi, Chang-Sik;Nam, Jeong-Sic;Lee, Ji-Sun;Jeon, Dae-Woo;Lee, Young-jin;Bae, Hyun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.714-718
    • /
    • 2018
  • Anti-reflection thin films are fabricated on glass substrates using the screen printing method. Tetra ethyl silicate(TEOS) and methyl tri methoxy silane(MTMS) are used as starting materials and buthyl carbitol acetate(BCA) and buthyl cellusolve(BC) are mixed to improve the viscosity of the solution. Anti-reflection thin films are fabricated according to the number of the screen mesh and the characteristics improve as the mesh size increases. The transmittance and reflectance of the coated thin film using 325 mesh are about 94 % and 0.43 % in the visible wavelength. The thickness and refractive index of the AR thin film are 107 nm and n = 1.26, respectively.

Effect of Combining Wood Particles and Plastic(Polypropylene) Screen on the Physical and Mechanical Properties of Board (목재(木材)파이티클과 플라스틱(폴리프로필렌) 망(網)의 결체(結締) 보오드의 물리(物理) 및 기술적(機械的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 1988
  • As a way for the effective utilization of pallman chips and sawdusts, these furnish materials were combined with non-woody material of plastic (polypropylene) screen in board manufacturing to improve their weak physical and mechanical properties. The conventional boards were made with conditions of specific gravity 0.40, 0.55, 0.70, and 0.85, resin content 8, 10, 12 and 14%, and number of polypropylene screen 1, 2, 3 and 4, and press-lam boards were also manufactured. The physical and mechanical properties were measured and discussed on thickness swelling, bending modulus of rupture and elasticity, tensile strength, internal bond strength, and screw holding strength. The results obtained at this study were summarized as follows: 1. In thinckness swelling both of pallman chip board and sawdust board were improved by the increase of resin content, and press-lam boards showed lower thickness swelling than conventional boards. 2. Both the modulus of rupture and elasticity were increased with the increase of specific gravity, and press-lam boards showed higher modulus of rupture and elasticity than conventional boards. On the other hand, modulus of rupture was increased with the increase of number of polypropylene screen and resin content whereas these effects in modulus of elasticity was not recognized. 3. Tensile strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen showed higher tensile strength than control boards. Also tensile strength was increased with the increase of number of polypropylene screen, and press-lam boards revealed higher tensile strength than conventional boards. 4. Internal bond strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen were lower in internal bond strength than control boards. Also, the boards combined with odd number of polypropylene screen showed lower internal bond strength than those combined with even number of polypropylene screen. 5. Screw holding strength was increased with the increase of resin content and specific gravity but significant difference was not approved between boards combined with polypropylene screen and control boards. In press-lam boards, pallman chip boards of higher specific gravity but sawdust boards of lower specific gravity showed better screw holding strength than control boards.

  • PDF