• Title/Summary/Keyword: scour monitoring

Search Result 23, Processing Time 0.028 seconds

A distributed piezo-polymer scour net for bridge scour hole topography monitoring

  • Loh, Kenneth J.;Tom, Caroline;Benassini, Joseph L.;Bombardelli, Fabian A.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.183-195
    • /
    • 2014
  • Scour is one of the leading causes of overwater bridge failures worldwide. While monitoring systems have already been implemented or are still being developed, they suffer from limitations such as high costs, inaccuracies, and low reliability, among others. Also, most sensors only measure scour depth at one location and near the pier. Thus, the objective is to design a simple, low cost, scour hole topography monitoring system that could better characterize the entire depth, shape, and size of bridge scour holes. The design is based on burying a robust, waterproofed, piezoelectric sensor strip in the streambed. When scour erodes sediments to expose the sensor, flowing water excites it to cause the generation of time-varying voltage signals. An algorithm then takes the time-domain data and maps it to the frequency-domain for identifying the sensor's resonant frequency, which is used for calculating the exposed sensor length or scour depth. Here, three different sets of tests were conducted to validate this new technique. First, a single sensor was tested in ambient air, and its exposed length was varied. Upon verifying the sensing concept, a waterproofed prototype was buried in soil and tested in a tank filled with water. Sensor performance was characterized as soil was manually eroded away, which simulated various scour depths. The results confirmed that sensor resonant frequencies decreased with increasing scour depths. Finally, a network of 11 sensors was configured to form a distributed monitoring system in the lab. Their exposed lengths were adjusted to simulate scour hole formation and evolution. Results showed promise that the proposed sensing system could be scaled up and used for bridge scour topography monitoring.

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.

Scour-monitoring techniques for offshore foundations

  • Byuna, Yong-Hoon;Parkb, Kiwon;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.667-681
    • /
    • 2015
  • The scour induced by strong currents and wave action decreases the embedded length of monopiles and leads to a decrease of their structural stability. The objective of this study is the development and consideration of scour-monitoring techniques for offshore monopile foundations. Tests on physical models are carried out with a model monopile and geo-materials prepared in a cylindrical tank. A strain gauge, two coupled ultrasonic transducers, and ten electrodes are used for monitoring the scour. The natural frequency, ultrasonic reflection images, and electrical resistivity profiles are obtained at various scour depths. The experimental results show that the natural frequency of the model monopile decreases with an increase in the scour depth and that the ultrasonic reflection images clearly detect the scour shape and scour depth. In addition, the electrical resistivity decreases with an increase in scour depth. This study suggests that natural frequency measurement, ultrasonic reflection imaging, and electrical resistivity profiling may be used as effective tools to monitor the scour around an offshore monopile foundation.

The measurement and evaluation of local scour at a bridge pier using the profiling scour monitoring system (프로파일링 세굴 모니터링 시스템을 이용한 교각 국부세굴 계측 및 평가)

  • Shin, Jong-Hyun;Park, Hyun-Il;Shin, Seung-Hyun;Park, Kyung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.38-47
    • /
    • 2009
  • Scour means the erosion of bed material by flow change when a bridge is constructed in a stream. Scour is one of the critical factors of a bridge failure. There are several methods for the monitoring of scour near bridge foundations; Sounding rods, Magnetic sliding collar System, Sonar system, underwater camera system and so on. In general, Sonar system is preferred due to its convenience and good accuracy. In this study, the new scour monitoring system was developed using profiling sonar sensor. The new system can measure a line profile of a seabed and has small size due to the effectively designed data logger. The performance of the new scour monitoring system was evaluated at a bridge pier in tidal environment. The measured local scour depths were discussed with the result of the empirical formulas; CSU, Froehlich, Laursen and Neill.

  • PDF

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.

Interdisciplinary Procedure for Scour Estimation at Inchon 2nd Bridge Piers (인천 제2연육교 세굴문제 해결을 위한 학제간 공동연구 방안)

  • Yeo, Woon-Kwang;Kim, Jeong-Hwan;Lee, Yang-Ku;Kim, Tae-In;Kim, Jong-In;Kwak, Ki-Seok;Lee, Jong-Kook;Kwak, Moon-Soo;Kim, Moon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.71-80
    • /
    • 2005
  • More than 100 bridges have been annually collapsed or seriously damaged by scouring in Korea. It is extremely hard to understand the complicated scour mechanism and estimate the scour depth with accuracy in fields, however since scouring is a very complex manifestation of sediment transport unable to describe with a simple mathematical tool. In order to obtain the reasonable solution to bridge scouring, therefore, the interdisciplinary co-operation is strongly recommended. In this study the special task force team for the scour problems around Incheon 2nd bridge piers is made, in which all kinds of scour oriented researches such as oceangraphic survey, hydraulic model test, numerical simulation, scour rate test, real-time scour monitoring, etc will be carried out. This paper provides this interdisciplinary procedure in details.

  • PDF

Determination of Bridge Scour Depth Considering Flow Conditions and Bed Characteristics (흐름특성과 하상특성을 동시에 고려한 교량세굴심 산정에 관한 연구)

  • Choi, Jong-Suk;Yeo, Woon-Kwang;Kim, Mun-Mo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.893-899
    • /
    • 2003
  • In this study, a realtime bridge scour monitoring system was installed and operated to measure the real scour depths in relatively hard and rocky bottom. And riverbed change at before and after flood was investigated by GPR(Ground Penetrating Radar) to check the rationality of measured values. As the result of this study, it was revealed the inaccuracy of equilibrium scour depth estimation through the bridge scout equations because most of the equations do not reflect the differences of geological characteristics, evaluated the real scour depths considering both bed and flow conditions.

Assessment of environmental effects in scour monitoring of a cable-stayed bridge simply based on pier vibration measurements

  • Wu, Wen-Hwa;Chen, Chien-Chou;Shi, Wei-Sheng;Huang, Chun-Ming
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.231-246
    • /
    • 2017
  • A recent work by the authors has demonstrated the feasibility of scour evaluation for Kao-Ping-Hsi Cable-Stayed Bridge simply based on ambient vibration measurements. To further attain the goal of scour monitoring, a key challenge comes from the interference of several environmental factors that may also significantly alter the pier frequencies without the change of scour depth. Consequently, this study attempts to investigate the variation in certain modal frequencies of this bridge induced by several environmental factors. Four sets of pier vibration measurements were taken either during the season of plum rains, under regular summer days without rain, or in a period of typhoon. These signals are analyzed with the stochastic subspace identification and empirical mode decomposition techniques. The variations of the identified modal frequencies are then compared with those of the corresponding traffic load, air temperature, and water level. Comparison of the analyzed results elucidates that both the traffic load and the environmental temperature are negatively correlated with the bridge frequencies. However, the traffic load is clearly a more dominant factor to alternate the identified bridge deck frequency than the environmental temperature. The pier modes are also influenced by the passing traffic on the bridge deck, even though with a weaker correlation. In addition, the variation of air temperature follows a similar tendency as that of the passing traffic, but its effect on changing the bridge frequencies is obviously not as significant. As for the effect from the alternation of water level, it is observed that the frequency baselines of the pier modes may positively correlate with the water level during the seasons of plum rains and typhoon.

A study on the applicability of system for monitoring the flood level and the scour at railroad bridge (철도교량 홍수위감시 및 세굴검지 시스템 적용성 고찰)

  • Park Young Kon;Lee Jin Wook;Yoon Hee Taek;Kim Seon Jong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.530-535
    • /
    • 2005
  • To monitor the flood level under heavy rainfall and the scour at railroad bridge, the system, which can effectively collect, store and transmit the data, is developed and applied to the field. The results in this study are as follows. 1) Monitoring for water level and scour depth is well done in view of the recording velocity and the accuracy of data which are measured. 2) This system is based on the web, internet and it is able to collect the realtime data and to analyze the risk. 3) When water level excesses the limit of danger level of a river on which railroad bridge is located, or when scour depth and angle of inclination of pier is increased, the scenario for early warning signal which sends to managers at central traffic control and drivers of trains is automatically made. It is judged that this system secures the safety of railroad and protects lives of train passengers as the warning signal sends to running train in advance at risky situation of railroad bridge under heavy rainfall.

  • PDF