• 제목/요약/키워드: scorpion venom peptide

검색결과 3건 처리시간 0.015초

BmKn-2 Scorpion Venom Peptide for Killing Oral Cancer Cells by Apoptosis

  • Tong-ngam, Pirut;Roytrakul, Sittiruk;Sritanaudomchai, Hathaitip
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2807-2811
    • /
    • 2015
  • Scorpion venom peptides recently have attracted attention as alternative chemotherapeutic agents that may overcome the limitations of current drugs, providing specific cytotoxicity for cancer cells with an ability to bypass multidrug-resistance mechanisms, additive effects in combination therapy and safety. In the present study, BmKn-2 scorpion venom peptide and its derivatives were chosen for assessment of anticancer activities. BmKn-2 was identified as the most effective against human oral squamous cells carcinoma cell line (HSC-4) by screening assays with an $IC_{50}$ value of $29{\mu}g/ml$. The BmKn-2 peptide killed HSC-4 cells through induction of apoptosis, as confirmed by phase contrast microscopy and RT-PCR techniques. Typical morphological features of apoptosis including cell shrinkage and rounding characteristics were observed in treated HSC-4 cells. The results were further confirmed by increased expression of pro-apoptotic genes such as caspase-3, -7, and -9 but decrease mRNA level of anti-apoptotic BCL-2 in BmKn-2 treated cells, as determined by RT-PCR assay. In summary, the BmKn-2 scorpion venom peptide demonstrates specific membrane binding, growth inhibition and apoptogenic activity against human oral cancer cells.

cDNA Cloning, Sequence Analysis and Molecular Modeling of a New Peptide from the Scorpion Buthotus saulcyi Venom

  • Nikkhah, Maryam;Naderi-Manesh, Hossein;Taghdir, Majid;Talebzadeh, Mehdi;Sadeghi-Zadeh, Majid;Schaller, Janatan;Sarbolouki, Mohamad N.
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.284-291
    • /
    • 2006
  • In this study, the cDNA of a new peptide from the venom of the scorpion, Buthotus saulcyi, was cloned and sequenced. It codes for a 64 residues peptide (Bsaul1) which shares high sequence similarity with depressant insect toxins of scorpions. The differences between them mainly appear in the loop1 which connects the $\beta$-strand1 to the $\alpha$-helix and seems to be functionally important in long chain scorpion neurotoxins. This loop is three amino acids longer in Bsaul1 compared to other depressant toxins. A comparative amino acid sequence analysis done on Bsaul1 and some of $\alpha$-, $\beta$-, excitatory and depressant toxins of scorpions showed that Bsaul1 contains all the residues which are highly conserved among long chain scorpion neurotoxins. Structural model of Bsaul1 was generated using Ts1 (a $\beta$-toxin that competes with the depressant insect toxins for binding to $Na^+$ channels) as template. According to the molecular model of Bsaul1, the folding of the polypeptide chain is being composed of an anti-parallel three-stranded $\beta$-sheet and a stretch of $\alpha$-helix, tightly bound by a set of four disulfide bridges. A striking similarity in the spatial arrangement of some critical residues was shown by superposition of the backbone conformation of Bsaul1 and Ts1.

Solution structure and functional analysis of HelaTx1: the first toxin member of the κ-KTx5 subfamily

  • Park, Bong Gyu;Peigneur, Steve;Esaki, Nao;Yamaguchi, Yoko;Ryu, Jae Ha;Tytgat, Jan;Kim, Jae Il;Sato, Kazuki
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.260-265
    • /
    • 2020
  • Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the κ-KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any β-sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs α/α) scorpion toxins such as κ-hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively-charged residues that is crucial for interaction with voltage-gated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1.