Objective: The purpose of this study was to evaluate the effects of self-ligating brackets (SBs) and other factors that influence orthodontic treatment outcomes. Methods: This two-armed cohort study included consecutively treated patients in a private practice. The patients were asked to choose between SBs and conventional brackets (CBs); if any patient did not have a preference, he or she was randomly allocated to the CB or SB group. All patients were treated using an identical archwire sequence. Evaluated parameters were as follows: treatment duration, number of bracket failures, poor oral hygiene, poor elastic wear, extraction, use of orthodontic mini-implants (OMI), OMI failure, American Board of Orthodontics (ABO) Discrepancy Index (DI), arch length discrepancy, and ABO Cast-Radiograph Evaluation (CRE) score. Stepwise regression analysis was performed to generate the equation for prediction of the CRE. Results: The final sample comprised 134 patients with an average age of 22.73 years. The average DI, CRE, and treatment duration were 21.81, 14.25, and 28.63 months, respectively. Analysis of covariance showed a significant difference in CRE between the CB and SB groups after adjusting for the effects of confounding variables. Stepwise regression analysis using four variables, namely extraction, SB use, poor elastic wear, and additional appliance use, could explain only 25.2% of the variance in the CRE. Conclusions: Although the CRE was significantly better for CBs than for SBs, the clinical significance of this result seems to be limited. Extraction, SB use, poor elastic wear, and additional appliance use may have significant effects on treatment outcomes.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.6
/
pp.1981-1995
/
2021
When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.
Pigs' aggressive behavior represents one of the common issues that occur inside pigpens and which harm pigs' health and welfare, resulting in a financial burden to farmers. Continuously monitoring several pigs for 24 hours to identify those behaviors manually is a very difficult task for pig caretakers. In this study, we propose a lightweight video-based approach for monitoring pigs' aggressive behavior that can be implemented even in small-scale farms. The proposed system receives sequences of frames extracted from an RGB video stream containing pigs and uses MnasNet with a DM value of 0.5 to extract image features from pigs' ROI identified by predefined annotations. These extracted features are then forwarded to a lightweight LSTM to learn temporal features and perform behavior recognition. The experimental results show that our proposed model achieved 0.92 in recall and F1-score with an execution time of 118.16 ms/sequence.
Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.
Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
Journal of Intelligence and Information Systems
/
v.25
no.1
/
pp.163-177
/
2019
As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.
TIAF1 is a TGF-${\beta}$1-induced anti-apoptotic factor that plays a critical role in blocking TNF (tumor necrosis factor) cytotoxicity in mouse fibroblasts and participates in TGF-${\beta}$-mediated growth regulation. In this study, we obtained the full-length cDNA sequence of the porcine TIAF1 gene. Real-time PCR further revealed that the TIAF1 gene was expressed at the highest level in liver and kidney with prominent expressions detected in uterus, and lower levels detected in heart, spleen, lung, stomach, small intestine, skeletal muscle and fat of Large White pigs. Sequence analysis indicated that a 6 base-pair deletion mutation existed in the exon of the TIAF1 gene between Meishan and Large White pigs. This mutation induced deletion of Gln and Val amino acids. PCR-RFLP was used to detect the polymorphism in 394 pigs of a "Large White${\times}$Meishan" $F_{2}$ resource population and four purebred pig populations. The frequencies of the A allele (with a 6 bp deletion) were dominant in Chinese Meishan and Bamei pigs, and the frequencies of the B allele (no 6 bp deletion) were dominant in Large White and Landrace pigs. Association analyses revealed that the deletion mutation had highly significant associations (p<0.01) with meat marbling score of the thorax-waist longissimus dorsi (LD) muscle (MM1) and intramuscular fat percentage (IMF), and significant associations (p<0.05) with carcass length (CL). The results presented here supply evidence that the 6 bp deletion mutation in the TIAF1 gene affects porcine meat quality and provides useful information for further porcine breeding.
Choi, Na Young;Park, Soonchan;Lee, Chung Min;Ryu, Chang-Woo;Jahng, Geon-Ho
Investigative Magnetic Resonance Imaging
/
v.23
no.3
/
pp.210-219
/
2019
Purpose: The purpose of this study was to investigate if double inversion recovery (DIR) imaging can have a role in the evaluation of brain ischemia, compared with diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Materials and Methods: Sixty-seven patients within 48 hours of onset, underwent MRI scans with FLAIR, DWI with b-value of 0 (B0) and $1000s/mm^2$, and DIR sequences. Patients were categorized into four groups: within three hours, three to six hours, six to 24 hours, and 24 to 48 hours after onset. Lesion-to-normal ratio (LNR) value was calculated and compared among all sequences within each group, by the Friedman test and conducted among all groups, for each sequence by the Kruskal-Wallis test. In qualitative assessment, signal intensity changes of DIR, B0, and FLAIR based on similarity with DWI and image quality of each sequence, were graded on a 3-point scale, respectively. Scores for detectability of lesions were compared by the McNemar's test. Results: LNR values from DWI were higher than DIR, but not statistically significant in all groups (P > 0.05). LNR values of DIR were significantly higher than FLAIR within 24 hours of onset (P < 0.05). LNR values were significantly different between, before, and after six hours onset time for DIR (P = 0.016), B0 (P = 0.008), and FLAIR (P = 0.018) but not for DWI (P = 0.051). Qualitative analysis demonstrated that detectability of DIR was higher, compared to that of FLAIR within 4.5 hours and six hours of onset (P < 0.05). Also, the DWI quality score was lower than that of DIR, particularly relative to infratentorial lesions. Conclusion: DIR provides higher detectability of hyperacute brain ischemia than B0 and FLAIR, and does not suffer from susceptibility artifact, unlike DWI. So, DIR can be used to replace evaluation of the FLAIR-DWI mismatch.
Journal of the Korean Institute of Landscape Architecture
/
v.15
no.1
/
pp.39-67
/
1987
The purpose of this thesis is to suggest objective basic data for the environmental design through the quantitative analysis of the visual quality included in the physical environment of forest landscape. For this, landscape values of forest landscape have been evaluated by using the Iverson method, the images structure of forest landscape's main utilizing space have been analysed by the factor analysis algorithm, degree of visual preferences have been pleasured mainly by questionnaries and SBE method, and finally these thesis can be summarized as fallow LCP with high values of Iverson factors I and IV yield high landscape value. Specifically, Iverson factor IV has been found to play the dominant. For all experimental points, significant seasonal variations in S.D. scale values have been observed. In natural parks, where artificial structures are complementary to the natural landscape, main factors of image are S.D. scales such as the visual sequence, the formal simplicity of structures, the emphasis, the unification of heterogeneous factors and the assimilation. Factors covering the spatial image of natural parks have been found to be the overall evaluation, the individual characteristics, the tidiness, the potentiality, the dignity, the intimacy and the space volume. For all seasons, factors such as the individual characteristics, the dignity, the tidiness, the potentiality, yield high factor scores. As for factors determining the degree of visual preference, variables such as the summit, the skyline, rocks, the water and the degree of natural destruction by artificial structures yield high values for all seasons.
The purpose of this research was to evaluate the clinical and the instrument of convergence utility of transient elastography (FibroScan(R):electromagnetic wave) in diagnosing and treating liver ailments through a comparison and an analysis between liver function blood test and transient elastography (FibroScan(R)) in patients with chronic hepatitis B virus infection. Of all the patients with chronic hepatitis B virus infection who visited clinic B in Daejeon City between July 1, 2015, and February 28, 2016, 75 who underwent a FibroScan(R) test were selected for this study. Their laboratory and liver function test results were compared for a correlation analysis before constructing an ROC (Receiver Operation Characteristic) curve. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were 0.572 and 0.502, respectively, and showed highest correlation with fibrosis score, with statistical significance (p<0.000). Gamma glutamyltranspeptidase, total bilirubin, and alkaline phosphatase levels also showed relatively significant correlations in this order of sequence, while -fetoprotein and total protein levels did not show any statistically significant values. Albumin (-0.449) and platelet levels (-0.373) showed negative correlations with each other and no correlation with fibrosis score (p < 0.000). As liver fibrosis worsened, the accuracy of the ROC curve increased. At the F4 stage, which is the cirrhotic stage, the largest area under the curve was observed. FibroScan(R) showed significant correlation with the ALT (serum glutamic pyruvic transaminase) and AST (serum glutamic oxaloacetic transaminase) levels in the liver function test, which is a routine test for patients with chronic liver ailments. This implies that fibrosis correlates with liver inflammation severity.
'Naturalness' is the important "ness" which is a key factor in image quality assessment. 'Naturalness' is a representive factor depending on the context of the image which arouses different emotions. The Image Quality Circle was split into two steps. The first step is predicting the visual perceptual attribute which are lightness, colourfulness, hue and contrast. The next step is SSE which is dependent to image contents. In this study the image contents are grouped in genres. The images were rendered using four different colour attributes which are lightness, contrast, colourfulness and hue. Using a scale, the score of image quality and SSE was asked to each participant for all rendered images. A seven-point category scale of increasing amount of "ness" is used as a quantitative adjectives sequence. The image quality model was built by combining the SSEs for each scene. The SSEs, where vividness is common, are considered as independent variables to predict the image quality score. Then the vividness model was built using colour attributes as variables to predict the vividness of each scene (genre). Vividness is an important factor of naturalness which the meaning is different for all scenes that links the naturalness and image quality. The vividness meaning was different for each scene (genre). Therefore, the colour attributes that express the vividness would depend on the image content.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.