• Title/Summary/Keyword: scientific thinking ability

Search Result 110, Processing Time 0.022 seconds

Effects of the Inquiry Model on the Scientific Thinking of Preschoolers (탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향)

  • Lee, Yeung Suk;Lim, Myeung Hee;Park, Ho Cheol
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

The Effect of Science Writing Activities on High School Students' Scientific Thinking Ability in Life Science I Class (생명 과학I 수업에서 과학 글쓰기 활동이 고등학생의 과학적 사고력에 미치는 영향)

  • Lee, Jungeun;Jeong, Eunyoung
    • Journal of Science Education
    • /
    • v.37 no.3
    • /
    • pp.476-491
    • /
    • 2013
  • The purpose of this study was to investigate the effect of science writing activities on high school students' scientific thinking ability in Life Science I class. In order to do this, 6 teaching-learning materials dealing with science writing and an evaluation tool for scientific thinking ability were developed. And the subjects were 224 high school students of 6 classes. As a result of applying science writing activities in Life Science I class, the students' scientific thinking ability was improved. And students' inductive/deductive/critical/creative thinking ability was improved. In addition, in the most of the evaluation criteria of scientific thinking ability, the scores of posttest were higher than those of pretest. The number of students to show higher performance levels was increased. Therefore, science writing activities have positive effect on high school students' scientific thinking ability. This study provides some implications for teaching science writing activities to develop students' scientific thinking ability.

  • PDF

Thinking Styles and Their Relationship with Self-regulated Learning Ability and Scientific Inquiry Ability of the Scientifically Gifted Students (과학영재들의 사고양식과 자기조절학습능력 및 과학탐구능력간의 관계 분석)

  • Lee, Ji-Ae;Park, Soo-Kyong;Kim, Young-Min
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.3
    • /
    • pp.773-796
    • /
    • 2011
  • This study examined the thinking styles of scientifically gifted students on the basis of Sternberg's theory of mental self-government, and the relationship between thinking styles and self-regulated learning ability of the students and their scientific inquiry ability by the different types of thinking styles. 110 middle school students who belonging to the university science-gifted education center participated in this study. 13 thinking styles were postulated that fall along 5 dimensions which are functions, forms, levels, scopes and leanings of the mental self-government. Scientifically gifted students responded to the Thinking Style Inventory (TSI) that standardized Korean version, Self-regulated Ability Inventory and Test of Science Inquiry Skills Inventory (TSIS). The results indicated that scientifically gifted students prefer legislative, liberal, external, hierarchical and judical thinking styles, rather than conservative style. This result also showed that subscales of thinking styles were significantly correlated with self-regulated learning ability and scientific inquiry ability. The legislative style, hierarchical style, local style and liberal style were significant predictors of self-regulation learning ability. The legislative style was significant predictor, whereas oligarchic style was negative predictor of scientific inquiry ability. The results of k-means clustering analysis and MANOVA showed that the self-regulated learning ability and scientific inquiry ability were significantly correlated with the pattern and level of thinking style.

Improvement of Students' Problem Finding and Hypothesis Generating Abilities: Gifted Science Education Program Utilizing Mendel's Law (문제발견 및 가설설정 능력 신장 과학영재교육프로그램 개발: 멘델의 과학적 사고과정 적용)

  • Kim, Soon-Ok;Kim, Bong-Sun;Seo, Hae-Ae;Kim, Young-Min;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.1033-1053
    • /
    • 2011
  • In the process of establishing the principle of genetics, Mendel discovered problems based on various observations. Mendel's scientific thinking ability can be effective if this ability is embedded in gifted science education programs. The study aims to develop a science gifted education program utilizing Mendel's scientific thinking ability shown in the principles of genetics and examine students' changes in scientific thinking ability before and after the program implementation. For the program development, first, the characteristics of Mendel's scientific thinking ability in the process of establishing the principle of genetics were investigated and extracted the major elements of inquiry. Second, the science gifted education programs was developed by applying the inquiry elements from the Mendel's Law. The program was implemented with 19 students of $7^{th}$, $8^{th}$ graders who attend the science gifted education center affiliated with university during July 2011. The Mendel's scientific thinking ability was classified into induction, deduction, and integration. The elements of inquiry extracted from the Mendel's scientific thinking include making observation, puzzling observation, proposing causal questions, generating hypothesis, drawing inference, designing experiment, gathering and analyzing data, drawing conclusions, and making generalization. With applying these elements, the program was developed with four phases: $1^{st}$ - problem finding; $2^{nd}$ - hypothesis generating; $3^{rs}$ - hypothesis testing and $4^{th}$ - problem solving. After implementation, students' changes in scientific thinking ability were measured. The findings from the study are as follows: First, students' abilities of problem finding is significantly (p<.05) increased. Second, students' abilities of hypothesis generating is significantly (pp<.05) increased.

Analysis of Awareness of Teachers for Core Competencies and Scientific Core Competencies (핵심역량과 과학과 교과역량에 대한 초등 교사의 인식 분석)

  • Ha, Ji-hoon;Shin, Youngjoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.426-441
    • /
    • 2016
  • The purpose of this study was getting the information for successful application to the national curriculum and students' core competencies enhancement, through investigation about competencies discussed in 2015 revised national curriculum development process and analysis about perception of 150 elementary school teachers in study. The results were as follows : Communication skill is considered to be the most important. Thinking ability what has been important traditionally is the middle of the rankings. Elementary school teachers think that a competency is specific to a subject. From this point of view, Creative/Scientific Problem-Solving Ability is the most important in science. They think that the enhancing of the ability of inquiry performance is highlighted in current science class. On elementary school teachers' awareness, inquiry model is the most effective in enhancing of scientific thinking and the ability of inquiry performance. And STS instruction model is in the other. PBL learning model and experimental inquiry model is the most effective in enhancing a competency has the highest feasibility like scientific thinking or the ability of inquiry performance.

Investigation of Scientific Argumentation in the Classes for Elementary Gifted Students (초등 단위 학교 영재 수업에서 나타나는 과학적 논증 과정에 대한 탐색)

  • Lim, Hyeon-Ju;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.4
    • /
    • pp.513-531
    • /
    • 2012
  • This study was to analyze the characteristic of scientific argumentation in the classes for the gifted of elementary school. The participants of this study were 5 fifth graders and 9 sixth graders, 14 in total, from the basic unit schools for gifted students of J elementary school in Incheon city. And it constituted small scale groups made up of 2~3 students with similar or identical ability in scientific reasoning. It had set up hypothesis for each group before the experiment, and students had a group discussion as a whole after the experiment. Classes were conducted 4 times, all courses were recorded as a sound/video. The ability in scientific reasoning of the students was inspected, making use of SRT II by means of pre-survey, and their argumentation levels were analyzed, utilizing 'Rubric for scientific argumentation course assessment.' As a result, argumentations did not incurred in every class. Analysis in argumentations of the students resulted in low level argumentation. This means argumentation cannot incur based on that with the limit in understanding the principle of experiments over the threshold of textbook no matter that he is an gifted student or not. The student both in formal operational period and transition period (2B/3A), the ability of scientific thinking in upper level, was improved of his argumentative ability in an overall aspect. However, a student of concrete operational period, the ability of scientific thinking in lower level, had argumentation with still lower level even after the experiment at the moment of discussing with the students on the upper level of scientific thinking ability.

The Influence of Hypothetico-deductive Teaching Programs on Creative Thinking, Critical Thinking and Scientific Attitude (가설-연역적 수업 프로그램이 창의적 사고와 비판적 사고 및 과학적 태도에 미치는 영향)

  • Park, Eun-Mi;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.3
    • /
    • pp.225-234
    • /
    • 2007
  • This research was conducted with an intention to develop a teaching program that possesses a goal of elevating higher thinking ability within the science class and to investigate its effect. The hypothetico-deductive teaching model was developed and its' program was designed to be directly put into the practical use, and apply it in class. The application of the hypothetico-deductive teaching program had a positive effect in the improvement of students' creative thinking ability and critical thinking ability. And it had a positive influence on scientific attitudes. After completing the program the opinions of the students who participated in this research by a poll were gathered and analyzed. The students felt uneasy and had a lot of difficulties during the program activity because they had to keep on thinking newly, critically, and scientifically, but they admitted that they gained the ability to think on their own when the program was completed.

An Analysis of Pre-service Elementary Teachers' Scientific Thinking and Emotions in Writing a Science Essay (초등예비교사의 과학 에세이 쓰기 활동에서의 과학적 사고력과 감성 분석)

  • Lim, Sung-man
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.341-350
    • /
    • 2018
  • The purpose of this study was to develop science essay writing activities for developing elementary pre-service teacher's scientific thinking ability and scientific emotion and to analyze its effects. For the study, 60 first grade students attending teacher training institutes in the G region of Korea were selected. All 60 elementary pre-service teachers were students who selected a liberal arts lecture related to 'science inquiry'. As a result of the study, we confirmed that the preliminary teacher uses the scientific method of 'induction' in the article related to scientific thinking and the description related to the past time, agency, and purpose of the story is included in the essay related to scientific emotion. In addition, it was confirmed that elementary school teachers' writing ability was improved as the writing was repeated, and that the image of 'science' changed positively in many areas. This study suggests that a various and interesting scientific inquiry activities are needed to improve the science writing skills.

Development of Performance Assessment of Scientific Inquiring Ability in Elementary School (초등학교 과학탐구력 측정을 위한 수행평가 도구 개발)

  • 한광래;김정길;김해경;남철우;송판섭;은경용
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.2
    • /
    • pp.11-22
    • /
    • 1998
  • The present educational and social circumstances require the improvement of science education and the promotion of scientific technology simultaneously Under this situation, it is necessary to develop the performance assessment evaluating the ability of scientific inquiry. The purpose of this study is to develop a valid and reliable instrument of the performance assessment that is can evaluate the scientific inquiring ability. The characteristics of the instrument developed through this study, are as follows, 1. The performance assessment can be impartially achieved for all the elements of scientific inquiry, which are required in the units of elementary science from 3rd to 6th grade of elementary school. 2. To maintain the objectivity of performance assessment, the detailed standpoints and standards are established. 3. The instruments are devised to evaluate the thinking skills with the experimental reports of student, the operation skills by the check list of evaluation that the teacher's observation for the student are recorded. 4. Considering the level of elementary school student, the items required the complex thinking and the investigative skills are exclude as much as possible. 5. The items are arranged according to the learning steps of elementary school, so that the evaluation may be achieved in parallel with the process of the real teaching -learning in class. 6. According to circumstances, make use of these materials for the evaluation as the practical teaching-learning materials instead of the normal teaching-learning materials The first field trial with the instrument was carried out, using a sample of 20 students from the 3rd to 6th at K and Y elementary school located in Kwangju city. The results of mean achievement quotient for each grade are as follows, the first term of 3rd grade (experiment and exercise skills ; 85%, inquiry thinking skills ; 74%), the second term of 3rd grade (experiment and exercise skills : 81%, inquiry thinking skills ; 76%), the first term of 4th grade (experiment and exercise skills ; 70%, inquiry thinking skills ; 59%), the second term of 4th grade (experiment and exercise skills ; 61%, inquiry thinking skills ; 71%), the first term of 5th grade (experiment and exercise skills ; 84%, inquiry thinking skills ; 67%), the second term of 5th grade (experiment and exercise skills; 73%, inquiry thinking skills ; 70%), the first term of 6th grade (experiment and exercise skills : 83%, inquiry thinking skills ; 84%), the second term of 6th grade (experiment and exercise skills ; 87%, inquiry thinking skills ; 81%).

  • PDF

The Effect of Categorizing Activity on Improving Critical Thinking to Meet Energy . Environment Issues (범주화 활동이 에너지 . 환경 쟁점에 대처하는 비판적 사고 개발에 미치는 영향)

  • Koo, Soo-Jeong;Pak, Sung-jae
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.2
    • /
    • pp.163-178
    • /
    • 1997
  • The purpose of this study is to investigate the effect of categorizing activities in lessons on improving critical thinking to meet energy environment issues in every day situation, supposing that there are not only scientific concepts but also critical thinking ability in scientific literacy to meet social controversies related with science intelligently. Categorizing Activity Program was developed and applied to the 10th grades(n=51) in Seoul for about one month. The program was consisted of two domains. They studied science concepts of various aspects of science, technology and society related with energy and environment in the first and second domain repectively, in the while, two critical tasks which include articles from newspapers and magazines were assigned to them for the development and evaluation of critical thinking abilities. The scores of critical thinking ability, the cognitive element, and critical thinking inclination, the affective element, were increased meaningfully(p<.05). In conclusion, categorizing activity as a strategy of concept attainment was effective in improving critical thinking for seeing various aspects with various view points needed in controversial issues related with energy and environment.

  • PDF