• Title/Summary/Keyword: scientific sonar

Search Result 11, Processing Time 0.014 seconds

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 1 ) - Experimental Verification of the Theory for Estimating Fish Density- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 1 ) - 어군량추정이론의 검증실험 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • An experiment has been carefully designed and performed to verify the theory for the echointergration technique of estimating the density of fish school by the use of steel spheres in a laboratory tank. The spheres used to simulate a fish school were randomly distributed throughout the insonified volume to produce the acoustic echoes similar to those scattered from real fish schools. The backscattered echoes were measured as a function of target density at tow frequencies of 50kHz and 200kHz. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. Acoustic scattering characteristics of a 36cm mackerel was investigated by measuring fish echoes with frequencies ranging from 47.8kHz to 52.0kHz. The fluctuation of bottom echoes caused by the effects of fish-school attenuation and multiple scattering which occurred in dense aggregations of fishes was also examined by analyzing the echograms of sardine schools obtained by a 50kHz telesounder in the set-net's bagnet, and the echograms obtained by a scientific echo sounder of 50kHz in the East China Sea, respectively. The results obtained can be summarized as follows: 1. The measured and the calculated echo shapes on the steel sphere used to simulate a fish school were in close agreement. 2. The waveform and amplitude of echo signals by a mackerel without swimbladder fluctuated irregularly with the measuring frequency. 3. When a collection of 30 targets/m super(3) lied the shadow region behind another collection of 5 targets/m super(3), the mean losses in echo energy for the 30 targets/m super(3) were about -0.4dB at 50kHz and about -0.2dB at 200kHz, respectively. 4. In the echograms obtained in the East China Sea, the bottom echoes fluctuated remarkably when the dense aggregations of fish appeared between transducer and seabed. Especially, in the case of the echograms of sardine school obtained in a set-net's bagnet, the disappearance of bottom echoes and the lengthening of the echo trace by fish aggregations were observed. Then the mean density of the sardine school was estimated as 36 fish/m super(3). It suggests that when the distribution density of fishes in oceans is greater than this density, the effects of fish-school attenuation and multiple scattering must be taken into account as a possible source of error in fish abundance estimates. 5. The relationship between mean backscattering strength (, dB) and target density ($\rho$, No./m super(3)) were expressed by the equations: =-46.2+13.7 Log($\rho$) at 50kHz and =-43.9+13.4 Log($\rho$) at 200kHz. 6. The difference between the experimentally derived number and the actual number of targets gradually decreased with an increase in the target density and was within 20% when the density was 30 targets/m super(3). From these results, we concluded that when the number of targets in the insonified volume is large, the validity of the echo-integration technique of estimating the density of fish schools could be expected.

  • PDF