• Title/Summary/Keyword: scientific sonar

Search Result 11, Processing Time 0.022 seconds

Visual census and hydro-acoustic survey of demersal fish aggregations in Ulju small scale marine ranching area (MRA), Korea (수중촬영조사법과 음향자원조사법을 활용한 울주군 연안 소규모 바다목장 해역의 어류 군집 조사)

  • Hwang, Bo-Kyu;Lee, Yoo-Won;Jo, Hyun-Su;Oh, Jeong-Kyu;Kang, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Visual census and hydro-acoustic survey was carried out at Ulju small scale marine ranching area (MRA) to estimate demersal fish aggregations on September and November 2013. In this hydro-acoustic survey, the authors combined an image sonar with a scientific echo sounder to monitor an underwater situation and compare two acoustic data. Consequently, visual census survey was useful to estimate fish species composition for hydro-acoustic survey, because it is easy to identify aggregated fish species and overcome limits on a fishing depth and ability of an conventional fishing gear like a bottom gill-net or a fish trap at marine ranching area. Mean fish density was estimated as $0.757g/m^2$ on September and $0.219g/m^2$ on November and Fish abundance was finally calculated as 1.51ton (coefficient of variation, CV=13.1%) on September and 0.44ton (CV=47.7%) on November, respectively. Hydro-acoustic survey combined with the image sonar was useful to monitor fish aggregations and estimate fish stocks around artificial reefs at shallow coastal MRA. We were able to easily identify the underwater structures like an artificial reef and a fishing rope as well as fish aggregations from image sonar data. Therefore, the method was effective to separate unwanted echo signals in acoustic data of scientific echo sounder.

Marine-Life-Detection and Density-Estimation Algorithms Based on Underwater Images and Scientific Sonar Systems (수중영상과 과학어탐 시스템 기반 해양생물 탐지 밀도추정 알고리즘 연구)

  • Young-Tae Son;Sang-yeup Jin;Jongchan Lee;Mookun Kim;Ju Young Byon;Hyung Tae Moo;Choong Hun Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.373-386
    • /
    • 2024
  • The aim of this study is to establish a system for the early detection of high-density harmful marine organisms. Considering its accuracy and processing speed, YOLOv8m (You Only Look Once version 8 medium) is selected as a suitable model for real-time underwater image-based object detection. Applying the detection algorithm allows one to detect numerous fish and the occasional occurrence of jellyfish. The average precision, recall rate, and mAP (mean Average Precision) of the trained model are 0.931, 0.881, and 0.948 for the validation data, respectively. Also, the mAP for each class is 0.97 for fish, 0.97 for jellyfish and 0.91 for salpa, all of which exceed 0.9 (90%) for classes demonstrating the excellent performance of the model. A scientific sonar system is used to address the object-detection range and validate the detection results. Additionally, integrating and grid averaging the echo strength allows the detection results to be smoothed in space and time. Mean-volume back-scattering strength values are obtained to reflect the detection variability within the analysis domain. Furthermore, an underwater image-based object (marine lives) detection algorithm, an image-correction technique based on the underwater environmental conditions (including nights), and quantified detection results based on a scientific sonar system are presented, which demonstrate the utility of the detection system in various applications.

Experimental Study of Vibration Characteristics of OKPO 300 (OKPO 300 진동 특성에 대한 실험적 연구)

  • Hwang, Arom
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.400-404
    • /
    • 2016
  • This paper presents experimental results for the vibration characteristics of the small unmanned underwater vehicle (UUV) OPKO 300, which was designed and manufactured by Daewoo ship and Marine Engineering Ltd. The autonomy of UUVs has led to an increase in their use in scientific, military, and commercial areas because their autonomy makes it possible for UUVs to be utilized instead of humans in hazardous missions such as mine countermeasure missions (MCM). Since it is impossible to use devices based on electromagnetic waves to gather information in an underwater environment, only sonar systems, which use sound waves, can be used in underwater environments, and their performance can strongly affect the autonomy of a UUV. Since a thruster system, which combines a motor and propeller in a single structure, is widely used as the propulsion system of a UUV and is mounted on the outside of a UUV’s stern, it can generate vibration, which can be transferred throughout the shell of the UUV from its stern to its bow. The transferred vibration can affect the performance of various sonar systems such as side-scan sonar or forward-looking sonar. Therefore, it is necessary to estimate the effect of the transferred vibration of the UUV on the sonar systems. Even if various numerical methods were used to analyze the vibration problem of a UUV, it would be hard to predict the vibration phenomena of a UUV at the initial design stage. In this work, an experimental study using OKPO 300 and an impact hammer was carried out to analyze the vibration feature of a small real UUV in the air. The frequency response function of the vibration based on the experimental results is presented.

Geophysical investigation of methane seeps on the NE Sakhalin continental slope, Sea of Okhotsk (오호츠크해 북동사할린 대륙사면에 나타나는 메탄분출구에 대한 지구물리탐사)

  • Jin, Young-Keun;SSGH-Scientific-Party, SSGH-Scientific-Party
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.137-140
    • /
    • 2008
  • During CHAOS (2003, 2006) and SSGH projects (2007), acoustic investigation including hydroacoustic (HA), side-scan sonar (SSS) and highresolution sparker seismic (HSS) surveys was carried out on the northeastern Sakhalin slope ($53^{\circ}56'\;N$, $143^{\circ}52'\;E$ to $54^{\circ}40'\;N$, $144^{\circ}32'\;E$). More than 130 methane seeps with high backscatter intensity are identified on SSS mosaic, which are well accompanied with gas flares in the water column on HA profiles and subbottom gas chimneys on HSS profiles. It is likely that that some seeps align along a NW strike parallel to the Lavrentiev Fault.

  • PDF

Study on Identification Procedure for Unidentified Underwater Targets Using Small ROV Based on IDEF Method (소형 ROV를 이용한 IDEF0 기반의 수중 미확인 물체 식별절차에 관한 연구)

  • Baek, Hyuk;Jun, Bong-Huan;Yoon, Suk-Min;Noh, Myounggyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.289-299
    • /
    • 2019
  • Various sizes of ROVs are being utilized in offshore industrial, scientific, and military applications all around the world. Because of innovative developments in science and technology, image acquisition devices such as sonar devices and cameras have been reduced in size and their performance has been improved. Thus, we can expect better accuracy and higher resolution even in the case of exploration using a small ROV. The purpose of this paper is to prepare a standard procedure for the identification of unidentified hazardous materials found during the National Oceanographic Survey. In this paper, we propose an IDEF (Integrated DEFinition) method modeling technique to identify unidentified targets using a small ROV. In accordance with the proposed procedure, an ROV survey was carried out on target No.16 with a four-ton-class fishing boat as a support vessel on September 18th of 2018 in the sea near Daebu Island. Unidentified targets, which were not known by the multi-beam data obtained from the ship, could be identified as concrete pipes by analyzing the HD camera and high-resolution sonar images acquired by the ROV. The whole proposed procedure could be verified, and the survey with the small ROV required about 10 days to identify the target in one place.

Analysis on the Present Condition of the Korean Stick-held Dip Net Fishery for Pacific Saury in the North Pacific Ocean (북태평양 한국 꽁치봉수망어엽의 현황 분석)

  • Jo, Hyun-Su;Moon, Dae-Yeon;Kim, Yeong-Seung;Lee, Ju-Hee;Kim, Hyung-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.97-103
    • /
    • 2004
  • This paper presents a general overview of the Korean stick-held dip net fishery for Pacific saury operated in the North Pacific Ocean since 1985. Annual catches, annual centroids distribution of fishing ground, and optimum fishing temperatures were compared between the periods before and after the new Korea-Japan bilateral fishery arrangement established in 1998. Fishing usually began in May and ended by December, during which major catches were taken in the months September~November before the bilateral fishery arrangement between Korea and Japan, whereas in August~October after the arrangement. It was observed that after the arrangement the centroids of fishing ground was shifted from the usual fishing area off the east coast of Japan to the east of South Kuril Islands, 45$^{\circ}$N and 151$^{\circ}$E. Optimum fishing temperatures appeared to be different by month ; 12.5~14.4$^{\circ}C$ in May, 12.0~14.2$^{\circ}C$ in June, 11.4~13.9$^{\circ}C$ in July, 11.4~15.9$^{\circ}C$ in August, 12.9~16.9$^{\circ}C$ in September, 12.7~17.3$^{\circ}C$ in October, 13.1~17.6$^{\circ}C$ in November, and 15.0~19.1$^{\circ}C$ in December. A total of 13 species were caught during scientific observation periods but the target species, Pacific saury, accounted for about 99.9% of the total catch. Although there was no difference in fishing days between those vessels equipped with the sonar and those without sonar, number of set, total catch, and CPUE of those with sonar were higher than those without sonar by 13%, 26%, and 12%, respectively.

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

Explorations of Hydrothermal Vents in Southern Mariana Arc Submarine Volcanoes using ROV Hemire (심해무인잠수정 해미래를 이용한 남마리아나 아크 해저화산 열수분출공 탐사)

  • Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Shim, Hyungwon;Park, Jin-Yeong;Yoo, Seong-Yeol;Jeong, Woo-Young;Baek, Sehun;Kim, Woong-Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.389-399
    • /
    • 2016
  • This paper presents the explorations of hydrothermal vents located in the Marina Arc and Back Arc Basin using the deep-sea ROV Hemire. These explorations were conducted by KRISO and KIOST to demonstrate the capability of Hemire in various applications for deep-sea scientific research. The missions included the following: (1) to search the reported vents, (2) conduct visual inspections, (3) deploy/recover a sediment trap and bait traps, (4) sample sediment/water/rock, (5) measure the magnetic field at the vent site, and (6) acquire a detailed map using multi-beam sonar near the bottom. We installed three HD cameras for precise visual inspection, a high-temperature thermometer, a three-component magnetometer, and a multi-beam sonar to acquire details of the bottom contour or identify vents in the survey area. The explorations were performed in an expedition from March 23 to April 5, 2016, and the missions were successfully completed. This paper discusses the operational process, navigation, and control of Hemire, as well as the exploration results.

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

Fishes distribution and their connection to artificial reefs off Bukchon, Jeju Island using geographic information system (지리정보시스템을 활용한 제주도 북촌의 인공어초해역에서 어류 분포와 어초와의 관계)

  • KANG, Myounghee;FAJARYANTI, Rina;JUNG, Bongkyu;YOON, Eun-A;MIN, Eunbi;LEE, Kyounghoon;OH, Woo-Seok;PARK, Geunchang;SHIN, Young-Jae;CHOI, Yong-Suk;YI, Byung-Ho;HWANG, Doojin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Various artificial reefs provide the fish habitat and nursery, and contribute the improvement of fisheries productivity. The evaluation methods of fishery resources in the artificial reefs have been done by fishing, scuba diving, underwater camera, and scientific echo sounder/sonar. There are a number of studies using echosounders on the quantitative and qualitative evaluations of artificial reefs in various seas around the world. This study focused on the spatial distribution of fishes around artificial reefs and the influential area of reefs off Bukchon, Jeju Island. Not only acoustic data but also various properties of artificial reefs were used in the geographic information system to extract relevant results. As a result, the major material of reefs on this study site was concrete and the number of reefs with that material was the most. The volume of reefs consisted of steel only and steel with riprap was considerably large compared to other reefs. The average NASC in the vertical distribution of fishes in artificial reefs was $31.6m^2/nm^2$ in April, and that was $61.3m^2/nm^2$ in June. The distance between the fish school and their nearest reef in June morning had a wide range from 750 to 3250 m. On the basis of the influence ray of artificial reefs, it had a tendancy of NASC to decrease with distance from the reef in the June morning. It is a preliminary study to present the geospatial analysis example to understand a better way of comprehensive artificial reef environments.