• Title/Summary/Keyword: scientific inquiry problem

Search Result 118, Processing Time 0.019 seconds

Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry (과학 탐구 기반의 통합적 STEM 교육 모형 개발 및 적용)

  • Lee, Hyonyong;Kwon, Hyuksoo;Park, Kyungsuk;Oh, Hee-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.63-78
    • /
    • 2014
  • Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.

The Development of Assessment Tools to Measure Scientific Creative Problem Solving ability for Middle School Students (중학생의 과학 창의적 문제 해결 능력을 측정하기 위한 도구 개발)

  • Park, In-Suk;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.2
    • /
    • pp.210-235
    • /
    • 2012
  • The purpose of this study was to develop a valid and reliable assessment tool for measuring scientific creative problem solving ability for middle school students. To achieve this aim, an assessment framework, four assessment items, and detailed rubrics for scientific creative problem solving were developed. The assessment framework had three dimensions (i.e. science contents, inquiry process, and thinking skills) and sub-elements for each dimension. The assessment items were tested with 320 middle school students in order to determine reliability, difficulty, and item discrimination. Science teachers and experts in science education checked the validity of the items and the rubrics. The results proved that the assessment tool was reliable enough to evaluate students' scientific creative problem solving skills.

Inquiry Problem Solving Characteristics among Categories with Science Process Skills and Concepts by High School Student's Protocol Analysis (고등학생의 프로토콜 분석을 통한 과학 탐구능력과 개념 중심의 탐구능력 대범주별 과학 문제 해결 특성)

  • Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.355-366
    • /
    • 1999
  • In this study, the characteristics of science inquiry problem solving were analyzed in the interactions between science process skills and science concepts by each related its category. Nine types of problem solving, which were based on two elements and the thinking aloud were found largely by protocol analysis, but six types when integrated similar thinking processes. There were quite differences in the representative types between students who succeeded and failed when science inquiry items were solved in the abilities of recognizing problems and generating hypotheses or those of drawing conclusions and evaluating. But there were not complete differences in those types between students who succeeded and failed when they were solved in the abilities of designing and performing experiments or those of interpreting and analyzing data. The data were divided into independent variables: $D_1,\;D_2,\;D_3,\;D_4,\;D$ and $C_1,\;C_2,\;C_3,\;C_4,\;C$ and dependant variables; $E_1,\;E_2,\;E_3,\;E_4,\;E$. The former consisted of the content-free science process skill achievement levels by each category of science inquiry skill and the science concept achievement levels, the latter the science inquiry problem achievement levels by each category of science inquiry skill. The regression equations were acquired within the 0.05 significant level by regression analysis: $E_1=0.03+0.16D_1+0.29C_1,\;E_2=-0.203+0.21D_2+0.45C_2,\;E_3=-0.32+0.13D_3+0.47C_3,\;E_4=0.61+0.09D_4+0.29C_4,\;E=-1.41+0.13D+0.47C$(E : the achievement of science problems, D : the achievement of science process skills, C : the achievement of science concepts).

  • PDF

The Analysis of Inquiry Activity in the Material Domain of the Elementary Science Textbook by Science and Engineering Practices (과학 공학적 실천에 의한 초등학교 과학 교과서 물질 영역의 탐구 활동 분석)

  • Cho, Seongho;Lim, Jiyeong;Lee, Junga;Choi, GeunChang;Jeon, Kyungmoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.2
    • /
    • pp.181-193
    • /
    • 2016
  • We examined the inquiry activities in the material domain of the elementary science textbooks and experimental workbooks based on 2009 revised curriculum. The analysis framework was SEP (Science and Engineering Practices) - 'Asking questions and defining problems', 'developing and using models', 'planning and carrying out investigations', 'analyzing and interpreting data', 'using mathematics and computational thinking', 'constructing explanations and designing solutions', 'engaging in argument from evidence', and 'obtaining, evaluating, and communicating information'. Sub-SEP of each grade band were also used. The results showed that the $3^{rd}{\sim}5^{th}$ grade science textbooks and workbooks mainly emphasized 'make observations and/or measurements', 'represent data in tables and/or various graphical displays', or 'use evidence to construct or support an explanation or design a solution to a problem' among around 40 sub-SEP. In the case of the inquiry activities for $6^{th}$ grade, majority of sub-SEP included were also only 'collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions', 'analyze and interpret data to provide evidence for phenomena' or 'construct a scientific explanation based on valid and reliable evidence obtained from sources'. The type of 'asking questions and defining problems', 'using mathematics and computational thinking' or 'obtaining, evaluating, and communicating information' were little found out of 8 SEP. Educational implications were discussed.

Effect of the Integrated STEM Project Learning Themed 'Lighting of Quantum Dot Solution' on Science High-School Small-Group Students' Problem Solving and Scientific Attitude ('양자점 용액의 발광'을 주제로 한 융합형 STEM 프로젝트 학습이 과학고등학교 소집단 학생들의 문제해결력과 과학적 태도에 미치는 효과)

  • Yi, Seung-Woo;Kim, Youngmin
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1356-1363
    • /
    • 2018
  • The purpose of this study was to investigate science high-school students' creativity and scientific attitude when an integrated science, technology, engineering and mathematics (STEM) project themed 'lighting of quantum dot solution' was applied to them. The subjects were a one team composed of 3 students in the 11th grade desiring to participate in the Korea Science Exhibition. They began with a scientific inquiry related to the physical properties of the QD solution and then gradually showed the process of expansion of their ideas into the integration of engineering, technology, and mathematics. Also, during the process, they showed problem solving ability and scientific attitudes, such as cooperation, endurance, and satisfaction of accomplishment.

Characteristics of Middle School Students' Open-Inquiry Report and Their Perceptions of Conducting Inquiry (중학생의 자유 탐구 보고서에 나타난 특징과 탐구 수행에 대한 학생들의 인식)

  • Park, Mi-Hyun;Cha, Jeong-Ho;Kim, In-Whan
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.371-377
    • /
    • 2012
  • In this study, open inquiry reports of 165 eighth graders in Daegu were analyzed in terms of content area, the types of inquiry hypothesis, and the types of inquiry variables. Before summer vacation, students learned about inquiry process and explored their own inquiry topic for two class hours. During summer vacation, students performed open inquiry including problem selection, designing and performing experiment, data collection, data analysis, and writing report. After the vacation, students submitted their reports, and answered to additional survey regarding the source of inquiry idea, the definition of hypothesis, and the most difficult step of inquiry process. As a result, chemistry was the most dominant content area of the reports and biology and life science were the next. 130 out of 165 reports included inquiry hypotheses, and most of them were predictive hypotheses. In many reports, dependent and independent variables could not be identified because of their ambiguity. However, inquiry variables described in experimental design, which were mostly categorical variables, were clearer than those described in inquiry subject and inquiry hypothesis. The most difficult step of inquiry process for students was to generate an idea for open inquiry.

Dewey's Pragmatic Conception of Value (듀이의 실용주의적 가치 개념)

  • Kook, Soon-ah
    • Journal of Korean Philosophical Society
    • /
    • v.137
    • /
    • pp.1-31
    • /
    • 2016
  • The aim of this paper is to put forward the significance that Dewey's naturalistic theory of value has today in examining how value arises from experience. This is a necessary discussion as logical-positivists bring about the problem of fact/value dichotomy and further deny the possibility of intellectual discussion on value judgments. In this situation, the task that the discussion on value must be resolved is to go beyond the problem of fact/value dichotomy and to confer objectivity upon value judgments. In the stream of analytic philosophy, the significance of Dewey's theory of value is revealed by how Putnam and Johnson receive it. To overcome the problem of dichotomy, Putnam asserts that they are entangled because the value arises from a criticism through scientific inquiry. Also Johnson proves that Dewey's moral deliberation as valuation is wedded with cognition, feeling, and imagination by the research on cognitive science and shows that Dewey's theory of value is un-relativistic because it is on the basis of shared experience. So, if the absolute value is not given to us, Dewey's theory of value shows us how value is made by open inquiry. It has the significance of proposing the direction that the theory of value orients itself today.

Investigation of 'Group Scientific Creativity' Factors in Gifted Students' Creative Project Solving Context (영재학생들의 창의적 문제해결상황에서 집단 과학창의성 영향요인 탐색)

  • Hong, Eunjeong;Heo, Namyoung;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.527-538
    • /
    • 2016
  • The purpose of this study is to select the factors of 'Group scientific creativity' and to find out how 'Group scientific creativity' turns out in the creative problem-solving process of students. To select the factors that affect 'Group scientific creativity', this research extracted 27 influencing factors on the group creativity from the prior study and organized them according to opinions of education experts. To select factors that affect 'Group scientific creativity' in the creative problem-solving process of students, this research analyzed the group problem-solving process that has been done on 72 gifted students for two days. Main results of the study is as follows: First, nine elements such as scientific thinking, scientific knowledge, scientific information-processing capacity, motivation, challenge, age and gender, existence of diversity, creativity educational experience, and the group cohesiveness were selected as human factors. Four elements such as scientific communication skills, scientific inquiry process, autonomy, and leadership were selected as the combining factors. Also, three elements such as the learning environment, teacher types, and compensation were selected as the Environmental factors. Second, it was possible to find that the group scientific creativity influence factors affecting the creative process by analyzing the gifted students in creative-problem solving process. Based on these results, this study described additional points on the factors improving 'Group scientific-creativity.'

Scientifically Gifted Students' Perception of the Impact of R&E Program based on KAIST Freshmen Survey (R&E 프로그램을 체험한 과학영재들의 사사교육 프로그램 효과에 대한 인식: KAIST 신입생을 중심으로)

  • Kim, Kyoung-Dae;Sim, Jae-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.4
    • /
    • pp.282-290
    • /
    • 2008
  • The Research and Education (R&E) program was a year-long, apprenticeship and research-based program that was guided by mentors who are scientists or science teachers. The objective of the R&E program was to help scientifically gifted students in Korea Science Academy (KSA) and Science High Schools (SHS) to enhance abilities in creative thinking, scientific inquiry, problem solving, positive attitude towards scientists, and promoting cooperative research and interests in science and technology. In this study, the impact of the R&E program on the goals of 182 gifted college students in KAIST was evaluated using Likert-type items and multiple-choice method approach that provided a more comprehensive evaluation of the program's impact on science attitudes, creative thinking, scientific inquiry, and interests in science and technology. The results indicated a positive impact on cooperative research, gaining knowledge on the research topic, attitude towards scientists, interest in science and technology, scientific inquiry, and creative thinking in that order. There were rather remarkable and meaningful differences in science inquiry (p<.05), and scientific knowledge (p<.01), between the two groups of KAIST freshmen who came from SHS and KSA in 2006. Implications for science apprenticeship or a research-based mentorship program and their respective evaluations are also discussed.

Development of Data-Driven Science Inquiry Model and Strategy for Cultivating Knowledge-Information-Processing Competency (지식정보처리역량 함양을 위한 데이터 기반 과학탐구 모형 개발)

  • Son, Mihyun;Jeong, Daehong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.6
    • /
    • pp.657-670
    • /
    • 2020
  • The knowledge-information-processing competency is the most essential competency in a knowledge-information-based society and is the most fundamental competency in the new problem-solving ability. Data-driven science inquiry, which emphasizes how to find and solve problems using vast amounts of data and information, is a way to cultivate the problem-solving ability in a knowledge-information-based society. Therefore, this study aims to develop a teaching-learning model and strategy for data-driven science inquiry and to verify the validity of the model in terms of knowledge information processing competency. This study is developmental research. Based on literature, the initial model and strategy were developed, and the final model and teaching strategy were completed by securing external validity through on-site application and internal validity through expert advice. The development principle of the inquiry model is the literature study on science inquiry, data science, and a statistical problem-solving model based on resource-based learning theory, which is known to be effective for the knowledge-information-processing competency and critical thinking. This model is titled "Exploratory Scientific Data Analysis" The model consisted of selecting tools, collecting and analyzing data, finding problems and exploring problems. The teaching strategy is composed of seven principles necessary for each stage of the model, and is divided into instructional strategies and guidelines for environment composition. The development of the ESDA inquiry model and teaching strategy is not easy to generalize to the whole school level because the sample was not large, and research was qualitative. While this study has a limitation that a quantitative study over large number of students could not be carried out, it has significance that practical model and strategy was developed by approaching the knowledge-information-processing competency with respect of science inquiry.