• Title/Summary/Keyword: scientific graph

Search Result 29, Processing Time 0.021 seconds

A Study on Middle School Students' Problem Solving Processes for Scientific Graph Construction (중학생의 과학 그래프 구성에 관한 문제 해결 과정 연구)

  • Lee, Jaewon;Park, Gayoung;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.5
    • /
    • pp.655-668
    • /
    • 2019
  • In this study, we investigated the middle school students' processes of scientific graph construction from the perspective of the problem solving process. Ten 9th graders participated in this study. They constructed a scientific graph based on pictorial data depicting precipitation reaction. The think-aloud method was used in order to investigate their thinking processes deeply. Their activities were videotaped, and semi-structured interviews were also conducted. The analysis of the results revealed that their processes of scientific graph construction could be classified into four types according to the problem solving strategy and the level of representations utilized. Students using the structural strategy succeeded in constructing scientific graph regardless of the level of representation utilized, by analyzing the data and identifying the trend based on the propositional knowledge about the target concept of the graph. Students of random strategy-higher order representation type were able to succeed in constructing scientific graph by systematically analyzing the characteristics of the data using various representations, and considering the meaning of the graph constructed in terms of the scientific context. On the other hand, students of random strategy-lower order representation type failed to construct correct scientific graph by constructing graph in a way of simply connecting points, and checking the processes of graph construction only without considering the scientific context. On the bases of the results, effective methods for improving students' ability to construct scientific graphs are discussed.

The Differences of Graph Construction of Middle School Students on Daily-life and Scientific Contexts by the Views on the Nature of Scientific Measurement (중학생의 측정의 본성에 대한 견해에 따른 일상 및 과학적 맥락에서의 그래프 구성의 차이)

  • Lee, Jaewon;Ryu, Goeun;Lee, Kyuyul;Noh, Taehee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.473-485
    • /
    • 2019
  • In this study, we investigated the differences of graph constructed by middle school students in daily-life and scientific contexts according to the views on the nature of scientific measurement. A test consisting of three similar data sets regarding daily-life and scientific contexts was developed, and administered to 151 ninth graders. They were expected to construct proportional, inverse-proportional, and increasing and become constant form of graphs for each data set. Graphs constructed were analyzed in the aspects of constructing a trend line (types of a trend line, interpolation/extrapolation), selecting axes variables, scaling axes, and plotting points. Analyses of the results revealed that the students with set paradigm tended to construct a curved trend line, while those with point paradigm constructed a broken trend line in inverse-proportional graph questions. In the aspects of interpolation/extrapolation, most students with set paradigm performed both interpolation and extrapolation better than those with point paradigm in scientific context. Most students with set paradigm performed both interpolation and extrapolation regardless of contexts, while the proportion of interpolation of those with point paradigm was higher in scientific context than in daily-life context. In selecting axes variables, scaling axes, and plotting dots, there were no statistically significant differences between set and point paradigms. On the bases of the results, educational implications for improving graph construction skills of middle school students are discussed.

The Effects of MBL-Used Instruction on Scientific Inquiry Skill and Graph Construction and Interpreting Abilities of Middle School Students (MBL 활용 수업이 중학교 학생들의 과학탐구능력과 그래프 작성 및 해석능력에 미치는 효과)

  • Choi, Sung-Bong
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.487-494
    • /
    • 2008
  • The purpose of this study was to investigate the effects of MBL experiment instruction on the 7th graders' scientific inquiry skills and graph construction and interpretation ability in the unit "Elements and movement of sea water". Results are as follows: First, this study analyzed the influence on students' scientific inquiry skill after having six MBL instructional classes. The result showed a significant difference in the scientific inquiry skills between the experimental group and the control group, which implies that the instruction using MBL was an effective way to improve students' scientific inquiry skills. Second, this study also analyzed the influence on students' abilities to construct and interpret graphs. The result did not show any significant differences between the experimental group and the control group in the ability to construct graphs. But it showed significant differences in the ability to interpretgraphs, which means that instruction using MBL was an effective way to improve students' ability to interpret graphs.

A Scheduling and Synchronization Technique for RAPIEnet Switches Using Edge-Coloring of Conflict Multigraphs

  • Abbas, Syed Hayder;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.321-328
    • /
    • 2013
  • In this paper, we present a technique for obtaining conflict-free schedules for real-time automation protocol for industrial Ethernet (RAPIEnet) switches. Mathematical model of the switch is obtained using graph theory. Initially network traffic entry and exit parts in a single RAPIEnet switch are identified, so that a bipartite conflict graph can be constructed. The obtained conflict graph is transformed to three kinds of matrices to be used as inputs for our simulation model, and selection of any of the matrix forms is application-specific. A greedy edge-coloring algorithm is used to schedule the network traffic and to solve the minimum coloring problem. After scheduling, empty slots are identified for forwarding the non real-time traffic of asynchronous devices. Finally, an algorithm for synchronizing the schedules of adjacent switches is proposed using edge-contraction and minors. All simulations were carried out using Matlab.

Author Graph Generation based on Author Disambiguation (저자 식별에 기반한 저자 그래프 생성)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.42 no.1
    • /
    • pp.47-62
    • /
    • 2011
  • While an ideal author graph should have its nodes to represent authors, automatically-generated author graphs mostly use author names as their nodes due to the difficulty of resolving author names into individuals. However, employing author names as nodes of author graphs merges namesakes, otherwise separate nodes in the author graph, into the same node, which may distort the characteristics of the author graph. This study proposes an algorithm which resolves author ambiguities based on co-authorship and then yields an author graph consisting of not author name nodes but author nodes. Scientific collaboration relationship this algorithm depends on tends to produce the clustering results which minimize the over-clustering error at the expense of the under-clustering error. In experiments, the algorithm is applied to the real citation records where Korean namesakes occur, and the results are discussed.

The Effect of Force and Motion Conceptions into the Kinematics Graph Construction (대학생의 운동학 그래프 작성에 대한 역학 개념의 효과)

  • Kwon, Sung-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.383-393
    • /
    • 1997
  • In order to study the effect of student's conceptions about force and motion into the graph construction in kinematics in college physics course, the tasks of constructing the qualitative graph in the similar problem context used in force conception was asked to the first 74 and third 97 student teacher in teachers' university. The frequencies analysis showed that student teachers had the naive conceptions that the throwing force was still acted to a upwarding ball. They also had the popular Aristotelian views about motion. These naive conceptions coexisted with the scientific conception about gravitational force. In a simple pendulum problem no one had the correct acceleration concepts which varies the direction in swing. This result suggest that student teacher had more difficulties in a acceleration problem than in a velocity problem In v-t and a-t graph construction tasks, the number of categories of a-t graphs were more than that of v-t graphs. There were many graph errors in a sign of velocity and acceleration. The acceleration conceptions without the relations of changes in velocity made the kinematics graphs more various shapes. The force and motion conceptions influenced the ability to construct the kinematics graphs.

  • PDF

The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model (합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점)

  • Jae-Sang Han;Hyun-Joo Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.237-251
    • /
    • 2023
  • This study explores the possibility of automated scoring for scientific graph answers by designing an automated scoring model using convolutional neural networks and applying it to students' kinematics graph answers. The researchers prepared 2,200 answers, which were divided into 2,000 training data and 200 validation data. Additionally, 202 student answers were divided into 100 training data and 102 test data. First, in the process of designing an automated scoring model and validating its performance, the automated scoring model was optimized for graph image classification using the answer dataset prepared by the researchers. Next, the automated scoring model was trained using various types of training datasets, and it was used to score the student test dataset. The performance of the automated scoring model has been improved as the amount of training data increased in amount and diversity. Finally, compared to human scoring, the accuracy was 97.06%, the kappa coefficient was 0.957, and the weighted kappa coefficient was 0.968. On the other hand, in the case of answer types that were not included in the training data, the s coring was almos t identical among human s corers however, the automated scoring model performed inaccurately.

An Analysis on Mathematical Thinking Processes of Gifted Students Using Problem Behavior Graph (PBG(Problem Behavior Graph)를 이용한 수학적 사고 과정 분석)

  • Kang, Eun-Joo;Hong, Jin-Kon
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.545-562
    • /
    • 2009
  • This study is trying to analyze characteristics of mathematical thinking processes of the mathematical gifted students in an objective and a systematic way, by using "Protocol Analysis Method"and "Problem Behavior Graph" which is suggested by Newell and Simon as a qualitative analysis. In this study, four middle school students with high achievement in math were selected as subjects-two students for mathematical gifted group and the other two for control group also with high scores in math. The thinking characteristics of the four subjects, shown in the course of solving problems, were elicited, analyzed and compared, through the use of the creative test questionnaires which were supposed to clearly reveal the characteristics of mathematical gifted students' thinking processes. The results showed that there were several differences between the two groups-the mathematical gifted student group and their control group in their mathematical talents. From these case studies, we could say that it is significant to find out the characteristics of mathematical thinking processes of the mathematical gifted students in a more scientific way, in the sense that this result can be very useful to provide them with the chances to get more proper education by making clear the nature of thinking processes of the mathematical gifted students.

  • PDF

The Manifold Research Fields of Facebook: A Bibliometric Analysis

  • Baran, Katsiaryna S.;Ghaffari, Hilda
    • Journal of Information Science Theory and Practice
    • /
    • v.5 no.2
    • /
    • pp.33-47
    • /
    • 2017
  • The aim of the present study is to analyze the present state and evolution of scientific research with regard to the scientific production generated on Facebook. Good analysis proves challenging due to the large number of publications about the topic. That is why we concentrate on Scopus as the information service with the highest coverage on this topic. We performed a bibliometric analysis on Facebook-related research from 2005 to 2016. We identified publication output, subject areas, journals, and countries in order to assess the publication trends and research hotspots in this field. Moreover, an author network graph and a geo map were applied to visualize some research trends. These results provide a basis for better understanding of the development of global Facebook research.

Empirical approach to Cognitive Process for Problems of Marine Design (해양디자인 문제해결을 위한 인지적 프로세스에 관한 실증적 접근)

  • Kim, Kiesu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.126-134
    • /
    • 2012
  • The researchers of this study closely looked into the methods for cognitive-scientific approach to problems of marine design at a time when the overall values of marine cultures are acknowledged in full scale. To that end, the researchers analyzed the problems and problem-solving process for the initial approach to marine design. At the same time, the researchers made the matrix of the design-developmental directions by cognitive scientific approach. After selecting the subjects, the researchers collected verbal protocol and behavior protocol which were shown in the process of a designer's thinking. This was for the sake of protocol analysis which is the representative research technique of cognitive science. Based on the collected data, the researchers empirically analyzed the behavior patterns shown in the marine design process so as to develop the design behavior-graph pattern of designers in an objective and systematic way. The behavior graph was helpful for looking into the initial developmental directions of design and for predicting cognitive structure of designers. The researchers hope that this study will become a fundamental material for predicting cognitive directions of designer for planning and designing the marine design.