• Title/Summary/Keyword: science payloads

Search Result 61, Processing Time 0.025 seconds

Assessment of Dynamic Open-source Cross-site Scripting Filters for Web Application

  • Talib, Nurul Atiqah Abu;Doh, Kyung-Goo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3750-3770
    • /
    • 2021
  • This study investigates open-source dynamic XSS filters used as security devices in web applications to account for the effectiveness of filters in protecting against XSS attacks. The experiment involves twelve representative filters, which are examined individually by placing them into the final output function of a custom-built single-input-form web application. To assess the effectiveness of the filters in their tasks of sanitizing XSS payloads and in preserving benign payloads, a black-box testing method is applied using an automated XSS testing framework. The result in working with malicious and benign payloads shows an important trade-off in the filters' tasks. Because the filters that only check for dangerous or safe elements, they seem to neglect to validate their values. As some safe values are mistreated as dangerous elements, their benign payload function is lost in the way. For the filters to be more effective, it is suggested that they should be able to validate the respective values of malicious and benign payloads; thus, minimizing the trade-off. This particular assessment of XSS filters provides important insight regarding the filters that can be used to mitigate threats, including the possible configurations to improve them in handling both malicious and benign payloads.

Development of an Earth Observation Optical Payload Simulator

  • Lee, Jong-Hoon;Lee, Jun-Ho;Cheon, Yee-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.1-35.1
    • /
    • 2008
  • The importance on the simulation of earth observation optical payloads has been recently emphasized in order to estimate on-orbit imaging performance of the payloads. The estimation should consider all aspects of payload development; design, manufacture, test, assembly, launch and space environment. Until recently several studies have been focused the evaluation of the individual factors rather than the integrated. This paper presents the development of an integrated payload simulator. The simulator analyzes the payload imaging performance based on MTF(Modulation Transfer Function) calculations of the major factors (Diffraction, Aberration, Detector integration, Image motion and etc.) and the simulator can generate realistic artificial earth images as taken by defined earth observation payloads. The simulator is developed for the use of evaluating pre- and post-launch imaging performance and assisting on-board calibration of COMPSAT-3.

  • PDF

POWER MANAGEMENT ANALYSIS FOR KITSAT-1 (우리별 1호의 전력 운용 관리 분석)

  • 구자춘;이임평;최순달;윤명중;최재동
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.20-29
    • /
    • 1996
  • Provision of the electrical power generated from solar array is one of the most fundamental requirements for the spacecraft payloads. Power subsystem collects, regulates and distributes power to the experiment payloads and to the various spacecraft subsystem. In this paper, the analysis result of the KITSAT-1 WOD shows that the in-orbit operation of whole power system has been in good condition.

  • PDF

Development of CanSat System for Collecting Weather Information With Autorotating Science Payload Ejection Function (자동회전 과학 탑재체 사출 기능을 갖춘 기상정보 수집용 캔위성 체계 개발)

  • Kim, Youngjun;Park, Junsoo;Nam, Jaeyoung;Lee, Junhyuck;Choi, Yunwon;Yoo, Seunghoon;Lee, Sanghyun;Lee, Younggun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.573-581
    • /
    • 2022
  • This paper deals with the development of CanSat system, which ejects two maple seed-type autorotating science payloads and collects weather information. The CanSat consists of two autorotating science payloads and a container. The container is equipped with devices for launching science payloads and communication with the ground station, and launches science payloads one by one at different designated altitudes. The science payload consists of a space for loading and a large wing, and rotates to generate lift for slowing down the fall speed. Specifically, after being ejected, it descends at a speed of 20 m/s or less, measures the rotation rate, atmospheric pressure, and temperature, and transmits the measured value to the container at a rate of once per second. The communication system is a master-slave structure, and the science payload transmits all data to the master container, which aggregates both the received data and its own data, and transmits it to the ground station. All telemetry can be checked in real time using the ground station software developed in-house. A simulation was performed in the simulation environment, and the performance of the CanSat system that satisfies the mission requirements was confirmed.

Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

  • Shin, Goo-Hwan;Chae, Jang-Soo;Lee, Sang-Hyun;Min, Kyung-Wook;Sohn, Jong-Dae;Jeong, Woong-Seob;Moon, Bong-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.67-72
    • /
    • 2014
  • The next generation small satellite-1 (NEXTSat-1) program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS) and NIR Imaging Spectrometer for Star formation history (NISS). The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST) and Korea Astronomy and Space science Institute (KASI) respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT) will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1's mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1's science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

Development Trends of Thermal Control Design and Analysis of Robotic Arm Payload for Spacecraft (인공위성 로봇팔 탑재체의 열 제어 설계 및 해석 개발 동향 )

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.27-47
    • /
    • 2024
  • In the New space era, satellites are being developed to perform on-orbit service (OOS) missions. Various missions for orbital service include failure repair, refueling, towing, component replacement, and space construction, and in order to do so, a robot arm payload must be mounted. Unlike conventional satellite payloads, the robot arm payload is not move in a fixed state, but is a payload that must move continuously to perform the mission. It is also characterized by the need to perform the mission while being directly exposed to outer space, rather than existing inside the structure of the satellite. Due to the characteristics of these payloads, thermal design and interpretation that can be operated smoothly in an extreme space thermal environment is essential, but there are not many papers on thermal design and interpretation of the robot arm. This paper introduces and summarizes cases of thermal design and interpretation of robot arm payloads developed so far, and finally, it intends to suggest directions for thermal design and interpretation of robot arm payloads to be developed in the future.

Laboratory geometric calibration simulation analysis of push-broom satellite imaging sensor

  • Reza Sh., Hafshejani;Javad, Haghshenas
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.67-82
    • /
    • 2023
  • Linear array imaging sensors are widely used in remote sensing satellites. The final products of an imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at different angles. By these images and their corresponding pinhole approximation, the correction function is extracted and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy.