• Title/Summary/Keyword: science cognitive domain

Search Result 178, Processing Time 0.022 seconds

The Effects of Explicit Instruction about Nature of Science by Elementary School Student's Cognitive Level (초등학생의 인지 수준에 따른 과학의 본성에 대한 명시적 교수 효과 분석)

  • Bang, Mi-Jeong;Kim, Hyo-Nam
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.3
    • /
    • pp.277-291
    • /
    • 2010
  • In this study, we investigated the effects of explicit instruction about nature of science by elementary school students' cognitive level. Participants were six classes, 187 sixth graders at elementary schools in Daegu. Three classes were assigned to control groups and the other classes to treatment groups. Control groups were provided normal instructions and treatment groups were provided instructions integrated with nature of science about chapter 'electromagnet' for 9 class periods. The results of this study were as follow. Both low-cognitive level students and high-cognitive level students in the treatment groups are improved in understanding about nature of science by the explicit instructions about nature of science. Especially, the high-cognitive level students had more improvement than the low-cognitive level students in understanding about nature of science by the explicit instructions about nature of science. There were no significant differences between the test scores of the two groups in the science interest sub-domain of the science-related affective domain. But, there were significant differences between the test scores of the two groups in curiosity and open-mindedness of the scientific attitudes sub-domain of the science-related affective domain.

  • PDF

Analysis of Elementary School Students' Self-Perception on the Affective, Behavioral and Cognitive Domains of Science Instruction (과학 수업에서 정의적·행동적·인지적 영역에 대한 초등학생들의 자기 인식 분석)

  • Park, SunI;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.360-374
    • /
    • 2019
  • The purpose of this study is to investigate the self-perceptions of the elementary school students' on the affective, behavioral and cognitive domains in science class. To see if there are differences in students' perceptions according to grade levels, a self-perception questionnaire was applied to third and fifth grade students in Seoul, Korea. The major results of the study are as follows. First, the perception level of the affective domain was higher than that of the cognitive domain in third grade students. There was no significant difference in the self-perception level of the fifth grade students. Both third and fifth grade students perceived the greatest improvement in the cognitive domain through one year of science teaching. Second, in the life science class, the same tendency was also observed. The students in the third and fifth grade reported that cognitive domains were the most improved through the one-year life science class. Third, when the students' perceptions were compared by grades, the third grade students showed higher self-perception scores than fifth grade students. As the grade increased, the perception scores of the students' lowered. Based on these findings, implications for science education research and teaching and learning at school are discussed.

A Brain-Based Approach to Science Teaching and Learning: A Successive Integration Model of the Structures and Functions of Human Brain and the Affective, Psychomotor, and Cognitive Domains of School Science (뇌 기능에 기초한 과학 교수학습: 뇌기능과 학교 과학의 정의적$\cdot$심체적$\cdot$인지적 영역의 연계적 통합 모형)

  • Lim Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.1
    • /
    • pp.86-101
    • /
    • 2005
  • In this study, a brain-basrd model for science teaching and learning was developed based on the natural processes which human acquire knowledge about a natural object or on event, the major domains of science educational objectives of the national curriculum, and the human brain's organizational patterns and functions. In the model, each educational objective domain is related to the brain regions as follows: The affective domain is related to the limbic system, especially amygdala of human brain which is involved in emotions, the psychomotor domain is related to the occipital lobes of human brain which perform visual processing, temporal lobes which perform functions of language generating and understandng, and parietal lobes which receive and process sensory information and execute motor activities of body, and the cognitive domain is related to the frontal and prefrontal lobes which are involved in think-ing, planning, judging, and problem solving. The model is a kind of procedural model which proceed fiom affective domain to psychomotor domain, and to cognitive domain of science educational objective system, and emphasize the order of each step and authentic assessment at each step. The model has both properties of circularity and network of activities. At classrooms, the model can be used as various forms according to subjects and student characteristics. STS themes can be appropriately covered by the model.

  • PDF

The Effects of Science Learning with the Levels of Inquiry Requirement in Elementary School Science Experiment Instruction: on Cognitive Domain (초등과학실험수업에서 탐구요구수준에 따른 학습의 효과: 인지적 영역을 중심으로)

  • Lim Chae-Seong;Kim Boon-Sook;Kim Eun-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.4
    • /
    • pp.321-328
    • /
    • 2005
  • In this study the effects of science teaming with the level of inquiry requirement in elementary school science experiment instruction were investigated on cognitive domain. We assigned seventy-three students of the fifth grade into two groups according to the levels of inquiry requirement. After each instruction was implemented, the characteristics of the students' tearning science on cognitive domain were compared and analyzed with the levels of them. The higher level (HL) inquiry-required instruction was more effective in increasing and maintaining the memory on the science teaming than the lower level (LL). Especially, in the aspects of the experimental methods and taking cares which the students engage and perform actively rather than do passively, the memory scores of HL group were higher than those of LL. In addition, the memory scores and the degree of maintenance were higher among students who perceived the instruction as easy and interesting. In conclusion, the HL of instruction could stimulate the students to challenge the problems, thereby make them construct meaning actively and improve the amount and degree of maintenance of memory on science teaming.

  • PDF

The Effects of Inquiry Instruction Utilizing Materials in Middle School Science (중학교 과학에서 탐구자료 활용 수업의 효과)

  • Kim, Sang-Dal;Kim, Chan-Ki;Kim, Hee-Jung;Ju, Kook-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.1 no.1
    • /
    • pp.63-71
    • /
    • 2008
  • The purpose for this study is to check if research activities can make positive effects on inquiry instruction utilizing materials when compared to traditional instruction utilizing the textbook. The effects of the class should be measured both in cognitive domain and in affective domain. The cognitive domain was measured by the change in achievements in learning science, and the affective domain was measured by the change in learning attitudes of science. The assumptions to be verified in this study were as follows. First, achievements in learning science are higher in the learner oriented inquiry instruction utilizing materials than in the learner oriented traditional instruction utilizing the textbook. Second, learning attitudes of science are higher in the learner oriented inquiry instruction utilizing materials than in the learner oriented traditional instruction utilizing the textbook.The results of the research are as follows. In the cognitive domain, achievements in learning science showed significant change(p=.045) measured by verifying the score for the difference among the averages for each sub-scale, in 5% of meaningful probability, and were higher in the inquiry instruction utilizing materials study. In the affective domain, learning attitudes of science showed significant change(p=.019) measured by verifying the score for the difference among the averages for each sub-scale, in 5% of meaningful probability, and were higher in the inquiry instruction utilizing materials study. In learning attitudes of science, 2 items(self-conception of science, attitudes of learning science) out of 3 items(self-conception of science, attitudes of learning science, learning habits of science) showed significant changes (p=.045, p=.001). But the difference(learning-habits of science) was not significant(p=.914).

  • PDF

A Study of the Goals on Science Pedagogy (과학교육학목표에 관한 연구)

  • Woo, Jong-Ok;Lee, Kyung-Hoon;Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.2
    • /
    • pp.159-169
    • /
    • 1994
  • The purpose of this study was to establish the goals of Science Pedagogy as a subject curriculum. This study is served as the criterion for syllabus of teacher's university which instruct the preservice science teachers. To perform this study, by a premise of Science Pedagogy, the domains and the categories of science eduactional goals ware pursued by review of literature. In this study, the sources to establish science educational goals are national educational ideology, nature of science, interests and cognitive levels of children, and social demands. According to these sources, the domains of science educational goals are as follows; 1.cognitive domain 2.inquiry process domain 3.manual skills domain 4.creativiry domain 5.science attitude domain 6.S-T-S domain These six domains are essential to school science educational achievement. Therefore, these domains are surely reflected in the course of science preservice teacher's training. On the base of these domains of science educational goals, 1 general goal and 10 specific objectives of Science Pedagogy are proposed.

  • PDF

Theoretical Study on Domain Analysis (도메인 분석(domain analysis)에 관한 이론적 고찰)

  • Yoo, Yeong-Jun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.1
    • /
    • pp.139-162
    • /
    • 2006
  • This study suggested a knowledge theory, theoretical framework and general principles in methodologies for library and information science by theoretically weighing domain analysis. The central concept to domain analysis are a subject knowledge constituting the domain and a discourse communities to share their knowledge. Therefore the study described a definition of domain and explained domain in ontological, epistemological, and sociological dimensions, proposed eleven approaches available in domain analysis. And the study argued the implications of domain analysis for library and information in position of socio-cognitive view and pragmatic realism.

Analysis for the changes of the mathematics cognitive domain and for the international achievement in TIMSS (TIMSS 인지영역 평가틀의 변화와 우리나라 학생들의 국제적 수학 성취도)

  • Kim, Sun-Hee
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.157-182
    • /
    • 2008
  • TIMSS 2003 is the third and most recently round of IEA's Trends in International Mathematics and Science Study. In this study, I considered the changes of the mathematics cognitive domain in TIMSS and got some facts for developing assessment framework. And I analyzed 7 countries' achievement in the view of our country Korea, i.e. Singapore, Hongkong, Chinese Taipei, Japan, Netherlands, and Unites States. With the reliable and valid achievement scales for cognitive domains given by ISC, students' achievement scales were analyzed according to country, percentile, and sex in each cognitive domain.

  • PDF

The Analysis of the Educational Objectives, Scientific Models and Cognitive Processes in Scientific Inquiry of the SNU Scientifically Gifted Student Program (서울대학교 과학 영재 프로그램의 학습 목표, 과학적 모형, 과학탐구의 인지 과정 분석)

  • Shin My-Young;Chun Miran;Choe Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.387-394
    • /
    • 2005
  • We have analyzed the science-gifted educational program (year 2002) at the Seoul National University in terms of its educational objectives, scientific models, and cognitive processes in scientific inquiry in order to provide insights into developing and improving science-gifted educational program. We assumed the following items as important factors for teaching scientifically gifted students: higher-order thinking skills involving synthesis domain in the educational objectives, highly abstract nature and complexity in the scientific models, cognitive processes of planning experiments in the cognitive processes in scientific inquiry. According to the analyzed results, the program has the following characteristics: (1) the rates of both higher and lower-order thinking skill domain in the educational objectives are similarly high, but the rate of synthesis domain is relatively low; (2) in the case of the scientific models, the rate of the multiple concepts and/or processes model is relatively low, while the level of the abstractness is relatively on average (3) cognitive processes of authentic scientific inquiry is not thoroughly reflected in the scientific inquiry activities, and very few cognitive processes of planning experiments factor is reflected. Therefore, we conclude in the synthesis domain in the educational objectives, multiple concepts and/or processes model, and cognitive processes of planning experiments should be especially reflected more on the science-gifted educational program in order to serve the needs of scientifically gifted students.

Analyses on Elementary Students' Cognitive Domain in Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach (뇌 기반 진화적 접근법을 적용한 초등학교 학생의 과학 자유탐구에서 인지적 영역 분석)

  • Baek, Ja-Yeon;Lim, Chae-Seong;Kim, Jae-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.4
    • /
    • pp.773-783
    • /
    • 2014
  • In National Curriculum of Science revised in 2007, the Free Inquiry was newly introduced to increase students' interest in science and to foster creativity by having students make their own question and find answer by themselves. The purpose of the study was to analyze characteristics, in cognitive domain, appeared in the processes of performing the Free Inquiry activities applying a brain-based evolutionary science teaching and learning principles. For this study, 106 fifth grade students participated, and they performed individually Free Inquiry activities. In order to characterize of the diversifying, estimating-evaluating-executing, and extending-applying activities in cognitive domain (C-DEF), the Free Inquiry diary constructed by the students, observations by a researcher, and interviews with the students were analyzed both quantitatively and qualitatively. The major results of this study were as follows: First, at C-D step, many students (71.5%) had difficulty in searching the meanings of their results and the contents of interpretations were at the level of simple description of their results. A few students (15.2%) derived interpretations based on causal relationships between specific variable and result. Also, the tendency that the numbers of interpretation about meaning of their results were increased as the scores of science attitude and achievement was appeared. Second, at C-E step, the students showed tendency of considering facts exactly explaining inquiry topic and being appliable to daily life rather than objectivity or accuracy of scientific knowledge. Third, at C-F step, there were three types of extension and application: simple repetition (8.2%), extension (64.0%), and upward application (17.6%) types. Based on these findings, implications for supporting appropriate interpretation, evaluation, and application of inquiry results are discussed.