• Title/Summary/Keyword: school model

Search Result 23,626, Processing Time 0.049 seconds

A Study on The Effect of Molecular Movement Model Based Instruction on High School Students' Conceptions of diffusion and Osmosis (확산과 삼투 분자운동 모형을 활용한 수업의 개념변화에의 효과)

  • Cho, Jung-Il;Lee, Hyung-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.3
    • /
    • pp.293-303
    • /
    • 1994
  • The purpose of this study was to find the effect of molecular movement model based instruction on high school students' conceptions of diffusion and osmosis. The study was composed of two groups, the traditional instruction group in which the so-called traditional instruction was performed, and the other group in which interventions by researchers were made. The subjects of the traditional instruction group consisted of a total of 242 high school students from Seoul, Gwangju and Mokpo. The subjects of the model based instruction group consisted of 177 first-year high school students in Mokpo. The study was focused on the use of the term of 'molecular movement' in their explanation of diffusion and osmosis in the correct contexts. In general, students who got the molecular movement model based instruction showed more frequent use of the terms of 'molecular movement' in the correct contexts than the control group students did. It was found that misconceptions including teleological explanations changed into scientific explanations by the intervention. It seemed that the molecular movement model led students to make scientific explanations on natural phenomena. A further research is recommended to assess the improvement of teleological explanation and scientific attitude by the molecular movement model.

  • PDF

State-of-charge Estimation for Lithium-ion Batteries Using a Multi-state Closed-loop Observer

  • Zhao, Yulan;Yun, Haitao;Liu, Shude;Jiao, Huirong;Wang, Chengzhen
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1038-1046
    • /
    • 2014
  • Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a fundamental issue in vehicle power train control and battery management systems. This study proposes a novel model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. The state-space model of lithium-ion battery is developed based on a three-order resistor-capacitor equivalent circuit model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under different driving cycles.

A SPICE-Compatible Model for a Gate/Body-Tied PMOSFET Photodetector With an Overlapping Control Gate

  • Jo, Sung-Hyun;Bae, Myunghan;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.353-357
    • /
    • 2015
  • A new SPICE-compatible model for a gate/body-tied PMOSFET photodetector (GBT PD) with an overlapping control gate is presented. The proposed SPICE-compatible model of a GBT PD with an overlapping control gate makes it possible to control the photocurrent. Research into GBT PD modeling was proposed previously. However, the analysis and simulation of GBT PDs is not lacking. This SPICE model concurs with the measurement results, and it is simpler than previous models. The general GBT PD model is a hybrid device composed of a MOSFET, a lateral bipolar junction transistor (BJT), and a vertical BJT. Conventional SPICE models are based on complete depletion approximation, which is more applicable to reverse-biased p-n junctions; therefore, they are not appropriate for simulating circuits that are implemented with a GBT PD with an overlapping control gate. The GBT PD with an overlapping control gate can control the sensitivity of the photodetector. The proposed sensor is fabricated using a $0.35{\mu}m$ two-poly, four-metal standard complementary MOS (CMOS) process, and its characteristics are evaluated.

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

Shear strength evaluation of RC solid piers of high-speed railway bridges in China

  • Guo, Wei;Fan, Chao;Cui, Yao;Zeng, Chen;Jiang, Lizhong;Yu, Zhiwu
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.413-423
    • /
    • 2021
  • Piers are the main lateral force-resisting members of high-speed railway (HSR) bridges used in China and are characterized by low axial load ratios, low longitudinal reinforcement ratios, low stirrup ratios, and high shear span ratios. It is well known that flexural, flexural-shear, and shear failures of piers may occur during an earthquake. In this study, a new shear strength model was developed to simulate the seismic failure of HSR solid piers accurately. First, low cyclic-loading test data of solid piers obtained in recent years were collected to set up a database for model verification. Second, based on the test database, the applicability of existing shear strength models was evaluated. Finally, a new shear strength model for HSR solid piers with round-ended cross-sections was derived based on the truss model and ultimate equilibrium theory. In comparison with existing models, it was demonstrated that the proposed model could be used to predict the shear strength of HSR piers more accurately.

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

Numerical modeling of concrete conveying capacity of screw conveyor based on DEM

  • Yu, Wenda;Zhang, Ke;Li, Dong;Zou, Defang;Zhang, Shiying
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.361-374
    • /
    • 2022
  • On the premise of ensuring that the automatic and quantitative discharging function of concrete conveyors is met, the accuracy of the weight forecast by the mathematical model of the screw conveying volume is improved, and the error of the weight of the concrete parts and the accumulation thickness is reduced. In this paper, the discrete element method (DEM) is used to simulate the macroscopic flow of concrete. Using the concrete discrete element model, the size of the screw conveyor is set, and establish the response model between the influencing factors (process and structure) and the concrete mass flow rate according to the design points of the screw discharging experiment. The nonlinear data fitting method is used to obtain the volumetric efficiency function under the influence of process and structural factors, and the traditional screw conveying volume model is improved. The mass flow rate of concrete predicted by the improved mathematical model of screw conveying volume is consistent with the test results. The model can accurately describe the conveying process of concrete and achieve the purpose of improving the accuracy of forecasting the weight of discharged concrete.

Life Prediction of Hydraulic Concrete Based on Grey Residual Markov Model

  • Gong, Li;Gong, Xuelei;Liang, Ying;Zhang, Bingzong;Yang, Yiqun
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.457-469
    • /
    • 2022
  • Hydraulic concrete buildings in the northwest of China are often subject to the combined effects of low-temperature frost damage, during drying and wetting cycles, and salt erosion, so the study of concrete deterioration prediction is of major importance. The prediction model of the relative dynamic elastic modulus (RDEM) of four different kinds of modified concrete under the special environment in the northwest of China was established using Grey residual Markov theory. Based on the available test data, modified values of the dynamic elastic modulus were obtained based on the Grey GM(1,1) model and the residual GM(1,1) model, combined with the Markov sign correction, and the dynamic elastic modulus of concrete was predicted. The computational analysis showed that the maximum relative error of the corrected dynamic elastic modulus was significantly reduced, from 1.599% to 0.270% for the BS2 group. The analysis error showed that the model was more adjusted to the concrete mixed with fly ash and mineral powder, and its calculation error was significantly lower than that of the rest of the groups. The analysis of the data for each group proved that the model could predict the loss of dynamic elastic modulus of the deterioration of the concrete effectively, as well as the number of cycles when the concrete reached the damaged state.

An analytical model of the additional confining stress in a prestress-reinforced embankment

  • Fang Xu;Wuming Leng;Xi Ai;Hossein Moayedi;Qishu Zhang;Xinyu Ye
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.517-529
    • /
    • 2023
  • Using a device composed of two lateral pressure plates (LPPs) and a steel reinforcement bar to apply horizontal pressure on slope surfaces, a newly developed prestress-reinforced embankment (PRE) is proposed, to which can be adopted in strengthening railway subgrades. In this study, an analytical model, which is available of calculating additional confining stress (σH) at any point in a PRE, was established based on the theory of elasticity. In addition, to verify the proposed analytical model, three dimensional (3D) finite element analyses were conducted and the feasibility in application was also identified and discussed. In order to study the performance of the PRE, the propagation of σH in a PRE was analyzed and discussed based on the analytical model. For the aim of convenience in application, calculation charts were developed in terms of three dimensionless parameters, and they can be used to accurately and efficiently predict the σH in a PRE regardless of the embankment slope ratio and LPP side length ratio. Finally, the potential applications of the proposed analytical model were discussed.

A three-dimensional two-hemisphere model for unmanned aerial vehicle multiple-input multiple-output channels

  • Zixu Su;Wei Chen;Changzhen Li;Junyi Yu;Guojiao Gong;Zixin Wang
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.768-780
    • /
    • 2023
  • The application of unmanned aerial vehicles (UAVs) has recently attracted considerable interest in various areas. A three-dimensional multiple-input multiple-output concentric two-hemisphere model is proposed to characterize the scattering environment around a vehicle in an urban UAV-to-vehicle communication scenario. Multipath components of the model consisted of lineof-sight and single-bounced components. This study focused on the key parameters that determine the scatterer distribution. A time-variant process was used to analyze the nonstationarity of the proposed model. Vital statistical properties, such as the space-time-frequency correlation function, Doppler power spectral density, level-crossing rate, average fade duration, and channel capacity, were derived and analyzed. The results indicated that with an increase in the maximum scatter radius, the time correlation and level-crossing rate decreased, the frequency correlation function had a faster downward trend, and average fade duration increased. In addition, with the increase of concentration parameter, the time correlation, space correlation, and level-crossing rate increased, average fade duration decreased, and Doppler power spectral density became flatter. The proposed model was compared with current geometry-based stochastic models (GBSMs) and showed good consistency. In addition, we verified the nonstationarity in the temporal and spatial domains of the proposed model. These conclusions can be used as references in the design of more reasonable communication systems.