• Title/Summary/Keyword: school drop-out

Search Result 172, Processing Time 0.032 seconds

Experiments on the Denting Damage and Residual Strength of Stiffened Plates (보강판의 국부변형 손상과 잔류 강도의 실험연구)

  • Park, Sang-Hyun;Shin, Hyun Kyoung;Kang, Eungsoon;Cho, Sang-Rai;Jang, Yong-Su;Baek, Nam-Ki;Park, Dong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.182-190
    • /
    • 2020
  • This study reports a series of drop impact tests performed to generate denting damages on stiffened plates and their residual ultimate strength tests under axial compression. The models were fabricated of general structural steel, and each model has six longitudinal stiffeners and two transverse frames. Among six fabricated models, four were damaged, and two were left intact for reference. To investigate the effects of collision velocity and impact location on the extent of damage, the drop height and the impact location were changed in each impact test. After performing the collision tests, the ultimate axial compression tests were conducted to investigate the residual strengths of the damaged stiffened plates. Finite element analyses were also carried out using a commercial package Abaqus/Explicit. The material properties obtained from a quasi-static tensile tests were used, and the strain-rate sensitivity was considered. After importing the collision simulation results, the ultimate strength calculations were carried out and their results were compared with the test data for the validation of the finite element analysis method.

Renewable Energy Configuration Plan of Micro Grid in Gapa Island (가파도 마이크로그리드 신재생 에너지 전원 구성 방안)

  • Kim, Dong-Wan;Ko, Ji-Han;Kim, Seong Hyun;Kim, Homin;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.16-23
    • /
    • 2014
  • This paper presents a renewable energy configuration plan of Micro grid in Gapa Island. To analyze the characteristics of Micro grid, BESS (Battery Energy Storage System), PMSG (Permanent Magnet Synchronous Generator) and SCIG (Squirrel Cage Induction Generator) are first modelled. The PMSG and SCIG will operate with basis on the real power curve. when the total power demand is larger than the total power generation, the BESS will be operated and the SOC (State Of Charge) is reduced. If the value of SOC could drop down to limited value, the system may be broken because of the voltage drop of BESS. To solve this problem, a DG (Diesel Generator) is used to charge the BESS and keep the voltage value of BESS with in a allowance limit. This paper represents simulation result when PMSG, SCIG connected to the Micro grid installed in Gapa Island. The simulation is carry out by using PSCAD/EMTDC program with actual line constant and transformer parameter in Gapa Island.

An Experimental Investigation of Thermodynamic Performance of R-22 Alternative Blends

  • Kim, Chang-Nyeon;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.36-44
    • /
    • 1998
  • R-410a and R-407c which have the best potential among R-22 alternatives were tested as drop-in refrigerants against a set of R-22 baseline tests. The performance evaluations were carried out in a psychometric calorimeter test facility using the residential spilt type air conditioner under the ARI rating conditions. Except the lubricant and hand-operated expansion valve, the other parts of the air conditioner were the same with the commercial system. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly charged into the current refrigeration system because its vapor pressure and other thermochemical properties are similar to those of R-22. However, it is required to change the volume flow rate of compressor in order to achieve the volumetric capacity of R-22. This results from its relatively small VCR and capacity. Meanwhile, R-410a has vapor pressure values too high to be substituted for the current system and this resulted relatively low COP of R-410a compared to that of R-22.

  • PDF

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

Measurement of Fluid Dynamic Characteristics around Stenotic Obstruction in a Circular Channel

  • An, Jin-Hyo;Cheema, T.A.;Jeong, Seong-Ryong;Lee, Choon-Young;Kim, Gyu-Man;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.921-929
    • /
    • 2011
  • We measured experimentally the properties of fluid dynamics, velocity fields, and the pressure, around stenotic obstruction located inside a circular channel structure. Particle image velocimetry system was employed to obtain velocity fields at the central section of the circular channel in the streamwise direction. The stenosis model used was made of acrylic material with different stenotic aspect ratios. The working fluid was water and it was returned by a centrifugal pump system. Pressure measurements were carried out to validate the effect of a narrow passageway. Results showed that the acceleration of gap flow through stenotic obstruction and the pressure drop in the recirculation regime behind the stenosis model can be observed.

Numerical investigation on the hydraulic loss correlation of ring-type spacer grids

  • Ryu, Kyung Ha;Shin, Yong-Hoon;Cho, Jaehyun;Hur, Jungho;Lee, Tae Hyun;Park, Jong-Won;Park, Jaeyeong;Kang, Bosik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.860-866
    • /
    • 2022
  • An accurate prediction of the pressure drop along the flow paths is crucial in the design of advanced passive systems cooled by heavy liquid metal coolants. To date, a generic pressure drop correlation over spacer grids by Rehme has been applied extensively, which was obtained from substantial experimental data with multiple types of components. However, a few experimental studies have reported that the correlation may give large discrepancies. To provide a more reliable correlation for ring-type spacer grids, the current numerical study aims at figuring out the most critical factor among four hypothetical parameters, namely the flow area blockage ratio, number of fuel rods, type of fluid, and thickness of the spacer grid in the flow direction. Through a set of computational fluid dynamics simulations, we observed that the flow area blockage ratio dominantly influences the pressure loss characteristics, and thus its dependence should be more emphasized, whereas the other parameters have little impact. Hence, we suggest a new correlation for the drag coefficient as CB = Cν,m2.7, where Cν,m is formulated by a nonlinear fit of simulation data such that Cν,m = -11.33 ln(0.02 ln(Reb)).

Study on $CO_2$ Evaporation Heat Transfer and Pressure Drop in a Horizontal Smooth Tube (수평 평활관내 $CO_2$ 증발열전달 및 압력강하에 관한 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.615-621
    • /
    • 2007
  • Experimental study on the heat transfer characteristics of $CO_2$ in a horizontal smooth tube was carried out to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200kg/m^2s$), heat flukes ($10{\sim}100kW/m^2$) and saturation temperatures (-5, 0, $5^{\circ}C$). With increasing the heat flux, the evaporation heat transfer coefficient increased. But the variation of the heat transfer coefficient on the increase of the mass flux was not large. And the significantly drops of the heat transfer coefficient was observed at any heat flux and mass flux because of the change of the flow pattern in the tube. With increasing the saturation temperature, the heat transfer coefficient increased due to the promotion of a nucleate boiling. The measured pressure drop during evaporation increased with increasing the mass flux and decreasing the saturation temperature.

A Study on Heat Transfer and Pressure Drop Characteristics of Staggered Tube Banks using CFD Analysis (CFD해석을 통한 엇갈린형 관군의 열전달 및 압력강하 특성에 관한 연구)

  • Zhao, Liu;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2985-2992
    • /
    • 2015
  • In this study, the characteristics of heat transfer and pressure drop was theoretically analyzed by changing longitudinal pitch, bump phase, location of vortex generator about the staggered tube banks by applying SST (Shear Stress Transport) turbulence model of ANSYS FLUENT v.14. Before carrying out CFD (Computational Fluid Dynamics) analysis, It is presumed that the boundary condition is the tube surface temperature of 363 K, the inlet air temperature of 313 K and the inlet air velocity of 5-10 m/s. The results indicated that the heat transfer coefficient is not affected by the longitudinal pitch and the bump phase of circle type was more appropriate than serrated type in the characteristics of heat transfer and pressure drop. Additionally, in case of vortex generator location, the heat transfer characteristics showed that forward location of tube was more favorable 4.6% than backward location.

A High-Efficiency, Robust Temperature/voltage Variation, Triple-mode DC-DC Converter (고효율, Temperature/voltage 변화에 둔감한 Triple-mode CMOS DC-DC Converter)

  • Lim, Ji-Hoon;Ha, Jong-Chan;Kim, Sang-Kook;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • This paper suggests the triple-mode CMOS DC-DC converter that has temperature/voltage variation compensation techniques. The proposed triple-mode CMOS DC-DC converter is used to generate constant or variable voltages of 0.6-2.2V within battery source range of 3.3-5.5V. Also, it supports triple modes, which include Pulse Width Modulator (PWM) mode, Pulse Frequency Modulator (PFM) mode and Low Drop-Out (LDO) mode. Moreover, it uses 1MHz low-power CMOS ring oscillator that will compensate malfunction of chip in temperature/voltage variation condition. The proposed triple-mode CMOS DC-DC converter, which generates output voltages of 0.6-2.2V with an input voltage sources of 3.3-5.5V, exhibits the maximum output ripple voltage of below 10mV at PWM mode, 15mV at PFM mode and 4mV at LDO mode. And the proposed converter has maximum efficiency of 93% at PWM mode. Even at $-25{\sim}80^{\circ}C$ temperature variations, it has kept the output voltage level within 0.8% at PWM/PFM/LDO modes. For the verification of proposed triple-mode CMOS DC-DC converter, the simulations are carried out with $0.35{\mu}m$ CMOS technology and chip test is carried out.

Designing High Power Amp for CDMA-Repeater used Fuzzy Logic (퍼지로직을 이용한 CDMA 중계기의 High Power Amp 설계)

  • Kim, Sung-Sik;Cho, Hyun-Chan;Oh, Chang-Heon;Lee, Kyu-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.118-121
    • /
    • 2003
  • Generally, the repeater in CDMA(Code Division Multiple Access) included HPA(HI-Power Amplifier) to amplifier communication signals. Also , HPA contained PD(Predistortor) to maintain the linearization of amplifier characteristics. A configuration component of PD have been used electricity nonlinear devices such that diode. But this diode takes many influences at the circumstance temperature. Consequently, it can't maintain output linearization, and drop the communication quality. The manufacturer set bias of the circuit to the manual at the first out of ware-house low But the Q-point changes according to the change of the high temperature or low temperature. Therefore, we designed a system to maintain the Q-point by FDM(Fuzzy Decision Maker) in this paper.

  • PDF