• 제목/요약/키워드: scenarios

Search Result 5,211, Processing Time 0.034 seconds

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Economic Analysis of Upland Crop Irrigation Between Individual and Collective Well Water Supply (밭 공간분포와 개별·집단관정 이용을 고려한 밭용수 공급 경제성 분석)

  • JANG, Seongju;PARK, Jinseok;SHIN, Hyung-Jin;KIM, Hyungjoon;HONG, Rokgi;SONG, Inhong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.192-207
    • /
    • 2020
  • Profitability of upland crops is better than paddy crops and proportion of upland is increasing. However, there is a lack of infrastructures for upland irrigation. The object of this study were to develop water supply scenarios using individual and collective agricultural wells to evaluate economic feasibility to consider geographical analysis of upland farms and water supply facilities. Cheongyang, Dangjin, Yesan, and Goesan were selected as study areas where four different crops of red pepper, chinese cabbage, apple, and bean, respectively, were mainly produced in Chungcheong province. As a result, B/C ratio was estimated as 1.49, 1.36, 1.90, and 0.71 in using individual wells scenario, and 1.45, 1.20, 1.91, and 0.65 in using collective wells scenario for red pepper, chinese cabbage, apple, and bean. It turned out that change of price effected on economic feasibility a lot for crops with low production income. As a result of evaluating economic feasibility by number of plots for developing collective well, there was no effect of economy of scale for red pepper and chinese cabbage. In case of collectivizating more than 20 upland plots, effect of economy of scale appeared for apple and bean. In conclusion, development of water using high value crops including red pepper and apple, and effect of collective well requires additory analysis of .spatial distribution of farms.

Analyzing Residential Land Use Change and Population Density Considering Climate Change Using Land Use Equilibrium Model in Jeju (토지이용균형모델을 이용한 기후변화에 따른 제주도 지역의 주거용 토지이용변화와 인구 밀도 예측)

  • YOO, So-Min;LEE, Woo-Kyun;Yamagata, Yoshiki;Lim, Chul-Hee;SONG, Chol-Ho;CHOI, Hyun-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.43-58
    • /
    • 2015
  • The greenhouse gas emission caused by rapid economic growth and population is increasing in Korea. Also, climate change from greenhouse gases emission is accelerated. IPCC(Intergovernmental Panel on Climate Change) report projects an increase of greenhouse gas emissions by 90% from the year 2000 to 2030(SRES, 2000). Within this context, establishing countermeasures on climate adaptation and mitigation is becoming increasingly important to reduce the negative effect of climate change at a global level. Along with global efforts to tackle climate change, Korean government has incorporated 'Low Carbon Green Growth'strategies into its national policy agenda. Local governments have also conducted a number of studies to devise plans for environmentally friendly and sustainable city development. In this paper, the land-use equilibrium model, which reflects economic and geographical characteristics, is used to analyze the change in residential land use and population density. The target area for study is Jeju island in Korea. With an application of land use equilibrium model, it derived three types of scenarios of the land use change: (1) dispersion scenario-reflecting present-day conditions (2) adaptation scenario-applying adaptation measures to climate change and (3) combined scenario-integrating both adaptation and mitigation measures in model to climate change. By applying dispersion to combined scenario, the general trend shows a downward shift in population density. Subsequently, energy consumption and expected cost associated with casualties were calculated on the basis of the findings of respective scenario. The results show a descending trend in energy consumption and expected casualtie. Therefore, understanding for residential land use and population density of each scenario that analyzed land use equilibrium model in the study is expected to devise a environmental city plan for climate change stabilization and climate adaptation and mitigation.

Variation in Heading States of Korean Winter Wheat under Winter Temperature Rise of Toluca in Mexico (멕시코 톨루카 지역의 겨울 기온상승에 따른 한국 밀 품종의 출수생태 변이)

  • Park, TaeIl;Chung, Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.99-108
    • /
    • 2016
  • The shuttle breeding of Korean winter wheat has been able to develop high-yielding and day-length-intensive varieties with a wide range of ecologic adoption. However, the phenology of winter wheat has been changed due to recent rises in the winter temperature of Toluca and increasing frequency of high temperatures. We defined two wheat groups (group II and III) with vernalization and evaluated the impact of cold exposure duration and heading ratio due to changes in sowing dates by measuring changes in cold exposure duration and corresponding heading states of each group. The wheat cultivars were sown on three dates in two years. The cold exposure requirement of wheat sown on 6 November 2013 was unfulfilled. The cold exposure requirement of wheat sown on 22 November and 6 December 2013 was fulfilled. However, in 2014, the cold exposure requirement of wheat sown on 5 and 20 November was fulfilled, but that of wheat sown on 5 December was unfulfilled. The differences for the two early November sowings were because winter temperature rises, which caused high temperatures in 2013, whereas early November 2014 saw normal temperatures for the area. The heading ratio of group II did not show a clear difference among the three sowing dates, while the heading ratio of group III was reduced by about half. This implies that the efficiency of shuttle breeding of group III will be high since it showed strong sensitivity to changes in sowing dates. We calculated future sowing dates of each group under near future climate scenarios; the future available sowing dates of group II were projected, but the dates of group III were never estimated in the temperature rise scenario in Toluca. Our findings suggest that change of sowing dates should be considered in the strategy for shuttle breeding of Korean winter wheat.

Management Strategy of Indoor Hazardous Chemicals (실내.외 통합 모델링 및 인체 위해성 평가를 통한 실내 유해화학물질의 관리 전략)

  • Shin, Yong-Seung;Lim, Hye-Sook
    • Journal of Environmental Policy
    • /
    • v.7 no.2
    • /
    • pp.67-90
    • /
    • 2008
  • The purpose of this study is to develop indoor air quality management strategies regarding indoor air pollutants while considering various factors affecting indoor pollutants concentration. The Integrated Indoor Air Quality model(IIAQ) developed by Seoul National University is used for this study. The IIAQ model is a tool that can provide an integrated view to indoor environmental pollution by simulating suggested scenarios. The results of the modeling are used to assess health risk. The concentrations that are used for the risk characterization are weighted concentrations based on the period of time in each place and existing Indoor Air Quality(IAQ) standards. The estimated concentration of toluene and formaldehyde for 10 years through the IIAQ model was 207.3 $ug/m^3$ and 36.4 $ug/m^3$ in indoors, and 55.9 $ug/m^3$ and 8.62 $ug/m^3$ in outdoors. These concentrations are lower than the existing IAQ standards. The estimated carcinogenic risk of formaldehyde is up to 1.05E-03 for the adult male group and exceeds 1E-06 for all receptor groups. This value means that cancer could affect one person out of 1000. The estimated non-carcinogenic risk of toluene was lower than 1, which means that there was no serious non- carcinogenic risk. The result of modeling shows that using low emitting indoor sources is the most effective strategy for both formaldehyde and toluene. This risk assessment suggests that the total exposure levels of existing IAQ standards may cause serious carcinogenic risk. In order to avoid uncontrolled risk, it is suggested that the current IAQ standards should be adjusted by taking into account the total amount of exposure from all exposure pathways from indoor and outdoor sources.

  • PDF

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

Analysis of PM2.5 Impact and Human Exposure from Worst-Case of Mt. Baekdu Volcanic Eruption (백두산 분화 Worst-case로 인한 우리나라 초미세먼지(PM2.5) 영향분석 및 노출평가)

  • Park, Jae Eun;Kim, Hyerim;Sunwoo, Young
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1267-1276
    • /
    • 2020
  • To quantitatively predict the impacts of large-scale volcanic eruptions of Mt. Baekdu on air quality and damage around the Korean Peninsula, a three-dimensional chemistry-transport modeling system (Weather Research & Forecasting - Sparse Matrix Operation Kernel Emission - Comunity Multi-scale Air Quality) was adopted. A worst-case meteorology scenario was selected to estimate the direct impact on Korea. This study applied the typical worst-case scenarios that are likely to cause significant damage to Korea among worst-case volcanic eruptions of Mt. Baekdu in the past decade (2005~2014) and assumed a massive VEI 4 volcanic eruption on May 16, 2012, to analyze the concentration of PM2.5 caused by the volcanic eruption. The effects of air quality in each region-cities, counties, boroughs-were estimated, and vulnerable areas were derived by conducting an exposure assessment reflecting vulnerable groups. Moreover, the effects of cities, counties, and boroughs were analyzed with a high-resolution scale (9 km × 9 km) to derive vulnerable areas within the regions. As a result of analyzing the typical worst-case volcanic eruptions of Mt. Baekdu, a discrepancy was shown in areas between high PM2.5 concentration, high population density, and where vulnerable groups are concentrated. From the result, PM2.5 peak concentration was about 24,547 ㎍/㎥, which is estimated to be a more serious situation than the eruption of Mt. St. Helensin 1980, which is known for 540 million tons of volcanic ash. Paju, Gimpo, Goyang, Ganghwa, Sancheong, Hadong showed to have a high PM2.5 concentration. Paju appeared to be the most vulnerable area from the exposure assessment. While areas estimated with a high concentration of air pollutants are important, it is also necessary to develop plans and measures considering densely populated areas or areas with high concentrations of susceptible population or vulnerable groups. Also, establishing measures for each vulnerable area by selecting high concentration areas within cities, counties, and boroughs rather than establishing uniform measures for all regions is needed. This study will provide the foundation for developing the standards for disaster declaration and preemptive response systems for volcanic eruptions.

An Exploration For Future Emerging Technologies by Science Mapping and a Dynamic Portfolio Setting for Government R&D Strategy (과학지도 작성을 통한 미래기술 발굴 및 정부R&D의 동적 투자방향성 설정 연구)

  • Yang, He-Young;Son, Suk-Ho;Han, Min-Kyu;Han, Jong-Min;Yim, Hyun
    • Journal of Technology Innovation
    • /
    • v.19 no.3
    • /
    • pp.1-29
    • /
    • 2011
  • Korean government built "2040 Science and Technology Future Vision" in order to show positive future scenarios and suggest a long-term guideline for a progress in science and technology. The S&T Future Vision was built based on an analysis of global megatrends and a prospect of domestic social change. After building S&T Future Vision, the "Government R&E Strategy"s was established as a follow-up action plan. The Government R&D Strategy consists of lists of future emerging technologies for future leadership, government R&D investment status and investment portfolio plans. Exploring future emerging technologies aggressively and making a governmental R&D strategic policy are requirements for national competitiveness, leadership in the world. Therefore search and selection for future emerging technologies is getting more and more important recently. Generally qualitative methodologies have been used such as expert-panel discussion method and portfolio analysis with expert valuation method in order to explore future technologies. These experts-based qualitative methodologies are well defined but lacking in some objectivity because size of expert-panels has limitations. We suggest a quantitative methodology, science mapping method to compensate this shortcoming in this study. There is another limitation related governmental R&D strategy which is that general R&D portfolios are static until a point of technology realization. We also propose a dynamic R&D investment portfolio which present different portfolios at a intermediate point and a point of technology realization. We expect this try with science mapping method and a dynamic R&D portfolio could strengthen strategic aspect of government R&D policy.

  • PDF

Decay Rate and Nutrients Dynamics during Decomposition of Oak Roots (상수리나무 뿌리 분해 및 분해과정에 따른 영양염류 변화)

  • 문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.165-171
    • /
    • 2004
  • Weight loss and nutrients dynamics during decomposition of oak roots (diameter classes: R₁〈0.2㎝, 0.5㎝〈R₂〈1㎝, 1㎝〈R₃〈2㎝, 2㎝.〈R₄〈4㎝) (Quercus acutissima) were studied for 33-months in Kongiu, Korea. After 33-months, decomposition rate of R₁, R₂, R₃ and R₄ was 49.6%, 47.5%, 66.4% and 66.1%, respectively. The decomposition constant(k) for R₁, R₂, R₃, and R₄ was 0.249/yr, 0.234/yr, 0.397/yr and 0.393/yr, respectively. Larger diameter class of the root lost more weight than smaller diameter class. N concentration in decomposing oak roots increased in all diameter classes. After 33-months, remaining N in R₁, R₂, R₃ and R₄ was 66.5%, 80.7%, 84.4% and 44.4%, respectively. K concentration in decomposing oak roots decreased in early part of decomposition and then increased in later stage of decomposition. After 33-months, remaining P in R₁, R₂, R₃ and R₄ was 64.7%, 62.4%, 93.1% and 30.7%, respectively. K concentration in decomposing oak roots decreased rapidly in early stage of decomposition. Remaining K in R₁, R₂, R₃ and R₄ was 11.6%, 10.6%, 5.9% and 7.7%, respectively. Ca concentration in decomposing oak roots showed different among diameter classes. After 33-months, remaining Ca in R₁, R₂, R₃ and R₄ was 66.2%, 51.0%, 39.1% and 48.3%, respectively. Initial concentration of Mg in oak root was higher in smaller diameter class. After 33-months, remaining Mg in R₁, R₂, R₃ and R₄ was 15.3%, 29.9%, 24.5% and 69.4%, respectively.