• Title/Summary/Keyword: scenario earthquake

Search Result 96, Processing Time 0.03 seconds

Understanding and Their Application of GoldSim Transport Pathways to Mass Trasport Simulation (질량 이동 모사 프로그램 개발을 위한 골드심 이동 패쓰웨이의 이해와 활용)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.135-151
    • /
    • 2014
  • It is very important to properly understand such "Transport Pathways" elements as "Pipe" and "Cell" pathways in commercial GoldSim Transport Module (GTM) for developing higer quality models and programs for performance assessment of complex radioactive waste repositories. With an illustrative case under an earthquake scenario, by which an increasement in the groundwater flow rate occurs though the geological medium, ways of avoiding possible modeling errors in the nuclide transport modeling in the radioactive waste repository system for its safety assessment by utilizing such pathways are discussed and a proper usage of the pathways is proposed.

Prototype Implementation of a Personalized Warning Notification System based on Geosocial Information (지오소셜 정보 기반 개인 맞춤형 경보 시스템 원형 구현)

  • Tiep, Vu Duc;Quyet, Nguyen Van;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.332-334
    • /
    • 2015
  • Nowadays a disaster event such as a building on fire, an earthquake or typhoon could occur any time, and any where. In such event, a warning notification system is a vital tool to send warning notifications to at-risk people in advance and provide them useful information to escape the dangerous area. Though some systems have been proposed such as emergency alert system using android, SMS or P2P overlay network, these works mainly focus on a reliable message distribution methods. In this work, we introduce a full prototype implementation of a personalized warning notification system based on geosocial information, which generates a personalized warning message for each user and delivers the messages through email or an android application. The system consists of four main modules: a web interface, database, a knowledge-based message generator, and message distributor. An android application is also created for user to receive warning messages on their smart phone. The prototype has been demonstrated successfully with a building-on-fire scenario.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

A study on the dam break scenario process by earthquake (지진으로 인한 댐붕괴 시나리오 작성절차에 관한 연구)

  • Park, Ki Bum;Choi, Gwang Bok;Yang, Jun Seok;Ahn, Seung Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.298-298
    • /
    • 2019
  • 과거에 경험하지 못한 집중호우가 빈번하게 발생하고 규모가 큰 태풍의 내습이 발생하고 있다. 2018년 7월23일 발생한 라오스 댐붕괴 발생으로 인해 6,600명의 이재민이 발생하였으며, 2008년 중국 쓰촨성 지진에 의해 댐 수백개가 균열이 발생하는 위험한 상황에 이르는 등 댐 붕괴에 따른 대규모 재난의 위험상황은 항시 존재하고 있다. 는 상황에서 댐의 붕괴에 대한 많은 연구가 진행되었다. 이러한 댐 붕괴 상황에 대한 대비책으로 저수지 댐의 안전관리 및 재해예방에 관한 법률 제3조와 자연재해 대책법 제37조에 총저수용량 30만톤 이상의 저수지에 대해 비상대처계획 수립을 하도록 되어 있다. 최근 경주와 포항에서 발생한 규모 5.4이상의 지진이 발생하여 지진에 의한 재난의 위험이 가중되고 있는 상황에서 지진에 의한 댐붕괴에 대한 적절한 시나리오와 분석이 필요하다. 지금까지의 지진붕괴에 의한 EAP의 작성은 단순히 만수위 상태에서 댐의 붕괴시간이 급격히 붕괴되어 범람되는 분석을 하였다. 그러나 지진에 의한 댐의 붕괴에 이르는 지진의 규모는 댐 주변의 건축물, 교량, 심지어 대피소도 붕괴 및 범람에 안전할 수 없는 상황에 이르게 될 것이다. 그러나 현재의 EAP는 단순 범람만을 통해 위험도를 나타내는 것으로 작성되어 있어 이에 대한 수정이 필요하다. 본 연구에서는 지진에 의한 댐 붕괴 EAP 작성시 고려되어야 할 건물의 노후도, 교량, 공공시설물 등이 붕괴될 위험을 판단하고 이에 따른 범람도면의 작성과 시나리오가 작성되어야 한다. 이를 위한 행정안전부에서 제시된 지진 시 댐 붕괴 조건에서 고려되어야 할 시나리오의 구성요소에 대해 검토하였다.

  • PDF

Hazard-Consistent Ground Displacement Estimation for Seismic Input of Underground Utility Tunnels in Korea (국내 재해도에 상응하는 공동구의 지반변위 산정)

  • Kim, Dae-Hwan;Lim, Youngwoo;Chung, Yon-Ha;Lee, Hyerin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.7-23
    • /
    • 2021
  • Underground utility tunnels, which contribute to supply of electricity, communication, water and heat, are critical lifelines of an urban area. In case service is discontinued or functional disruption happens, there will be a huge socio-economic impact. For the improved seismic design and evaluation of underground structures, this study proposes a ground displacement measure when the site is subjected to a scenario earthquake based on hazard-consistent source spectra and site amplification/attenuation. This measure provides a rational estimation of ground displacement and can be an alternative to existing response displacement methods.

Assessment of seismic retrofitting for soft-story buildings using gapped inclined brace system

  • Tohamy, Mohamed. A.;Elsayed, Mostafa. M.;Akl, Adel. Y.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.319-330
    • /
    • 2022
  • Retrofit of soft-story buildings due to seismic loads using Gap-Inclined-Brace (GIB) system is considered a new retrofit technique that aims to maintain both strength and stiffness of structure. In addition, it provides more ductility and less P-delta effect, and subsequently better performance is observed. In this paper, the effect of the eccentricity between GIB and the retrofitted column due to installation on the efficiency of the retrofitting system is studied. In addition, a modification in the determination method of GIB properties is introduced to reduce the eccentricity effect. Also, the effect of GIB system on the seismic response of mid-rise buildings with different heights considering soft-story at various heights has been studied. A numerical model is developed to study the impact of such system on the response of retrofitted soft-story buildings under the action of seismic loads. To achieve that goal, this model is used to perform a numerical investigation, by considering five case study scenarios represent several locations of soft-story of two mid-rise reinforced concrete buildings. At first, Non-linear static pushover analysis was carried out to develop the capacity curves for case studies. Then, Non-linear time history analyses using ten earthquake records with five peak ground accelerations is performed for each case study scenario before and after retrofitting with GIB. The results show that large GIB eccentricity reduce the ultimate lateral resistance and deformation capacity of the retrofitting system. Moreover, the higher the retrofitted building, the more deformation capacity is observed but without significant increase in ultimate lateral resistance.

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation

  • Gkournelos, Panagiotis D.;Bournas, Dionysios A.;Triantafillou, Thanasis C.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.625-639
    • /
    • 2019
  • The concept of the combined seismic and energy retrofitting of existing reinforced concrete (RC) buildings was examined in this paper through a number of case studies conducted on model buildings (simulating buildings of the '60s-'80s in southern Europe) constructed according to outdated design standards. Specifically, seismic and thermal analyses have been conducted prior to and after the application of selected retrofitting schemes, in order to quantify the positive effect that retrofitting could provide to RC buildings both in terms of their structural and energy performance. Advanced materials, namely the textile reinforced mortars (TRM), were used for providing seismic retrofitting by means of jacketing of masonry infills in RC frames. Moreover, following the application of the TRM jackets, thermal insulation materials were simultaneously provided to the RC building envelope, exploiting the fresh mortar used to bind the TRM jackets. In addition to the externally applied insulation material, all the fenestration elements (windows and doors) were replaced with new high energy efficiency ones. Afterwards, an economic measure, namely the expected annual loss (EAL) was used to evaluate the efficiency of each retrofitting method, but also to assess whether the combined seismic and energy retrofitting is economically feasible. From the results of this preliminary study, it was concluded that the selected seismic retrofitting technique can indeed enhance significantly the structural behaviour of an existing RC building and lower its EAL related to earthquake risks. Finally, it was found that the combined seismic and energy upgrading is economically more efficient than a sole energy or seismic retrofitting scenario for seismic areas of south Europe.