• Title/Summary/Keyword: scenario cluster

Search Result 91, Processing Time 0.022 seconds

A Hydrodynamical Simulation of the Off-Axis Cluster Merger Abell 115

  • Lee, Wonki;Kim, Mincheol;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2018
  • A merging galaxy cluster is a useful laboratory to study many interesting astrophysical processes such as intracluster medium heating, particle acceleration, and possibly dark matter self-interaction. However, without understanding the merger scenario of the system, interpretation of the observational data is severely limited. In this work, we focus on the off-axis binary cluster merger Abell 115, which possesses many remarkable features. The cluster has two cool cores in X-ray with disturbed morphologies and a single giant radio relic just north of the northern X-ray peak. In addition, there is a large discrepancy (almost a factor of 10) in mass estimate between weak lensing and dynamical analyses. To constrain the merger scenario, we perform a hydrodynamical simulation with the adaptive mesh refinement code RAMSES. We use the multi-wavelength observational data including X-ray, weak-lensing, radio, and optical spectroscopy to constrain the merger scenario. We present detailed comparisons between the simulation results and these multi-wavelength observations.

  • PDF

Selecting Climate Change Scenarios Reflecting Uncertainties (불확실성을 고려한 기후변화 시나리오의 선정)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.149-161
    • /
    • 2012
  • Going by the research results of the past, of all the uncertainties resulting from the research on climate change, the uncertainty caused by the climate change scenario has the highest degree of uncertainty. Therefore, depending upon what kind of climate change scenario one adopts, the projection of the water resources in the future will differ significantly. As a matter of principle, it is highly recommended to utilize all the GCM scenarios offered by the IPCC. However, this could be considered to be an impractical alternative if a decision has to be made at an action officer's level. Hence, as an alternative, it is deemed necessary to select several scenarios so as to express the possible number of cases to the maximum extent possible. The objective standards in selecting the climate change scenarios have not been properly established and the scenarios have been selected, either at random or subject to the researcher's discretion. In this research, a new scenario selection process, in which it is possible to have the effect of having utilized all the possible scenarios, with using only a few principal scenarios and maintaining some of the uncertainties, has been suggested. In this research, the use of cluster analysis and the selection of a representative scenario in each cluster have efficiently reduced the number of climate change scenarios. In the cluster analysis method, the K-means clustering method, which takes advantage of the statistical features of scenarios has been employed; in the selection of a representative scenario in each cluster, the selection method was analyzed and reviewed and the PDF method was used to select the best scenarios with the closest simulation accuracy and the principal scenarios that is suggested by this research. In the selection of the best scenarios, it has been shown that the GCM scenario which demonstrated high level of simulation accuracy in the past need not necessarily demonstrate the similarly high level of simulation accuracy in the future and various GCM scenarios were selected for the principal scenarios. Secondly, the "Maximum entropy" which can quantify the uncertainties of the climate change scenario has been used to both quantify and compare the uncertainties associated with all the scenarios, best scenarios and the principal scenarios. Comparison has shown that the principal scenarios do maintain and are able to better explain the uncertainties of all the scenarios than the best scenarios. Therefore, through the scenario selection process, it has been proven that the principal scenarios have the effect of having utilized all the scenarios and retaining the uncertainties associated with the climate change to the maximum extent possible, while reducing the number of scenarios at the same time. Lastly, the climate change scenario most suitable for the climate on the Korean peninsula has been suggested. Through the scenario selection process, of all the scenarios found in the 4th IPCC report, principal climate change scenarios, which are suitable for the Korean peninsula and maintain most of the uncertainties, have been suggested. Therefore, it is assessed that the use of the scenario most suitable for the future projection of water resources on the Korean peninsula will be able to provide the projection of the water resources management that maintains more than 70~80% level of uncertainties of all the scenarios.

Assessing uncertainties of GCM scenarios using maximum entropy (Maximum entropy를 이용한 GCM 시나리오의 불확실성 평가)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.70-70
    • /
    • 2011
  • 기후변화 연구는 불확실한 미래를 전망하는 과정이므로 '불확실성'은 모든 기후변화 영향평가의 키워드임에 분명하다. 하지만 불확실성 평가를 위해 IPCC에서 제공되고 있는 수많은 GCM 시나리오를 모두 활용하기에는 많은 시간과 노력이 필요하기 때문에 이를 효율적으로 수행할 수 있는 방법이 필요하다 본 연구에서는 시나리오 저감(scenario reduction)방법을 이용하여, 수많은 GCM 시나리오 대신 몇 개의 대표적 GCM 시나리오로도 충분히 불확실성을 유지할 수 있는 시나리오 저감(scenario reduction)방법을 수립하고 제시하였다. IPCC 기후시나리오 중 20C3M과 A & B 배출시나리오를 바탕으로 생산되는 71개의 GCM 시나리오를 다운로드 받아 월평균 기온과 강수량에 대하여 한반도를 대상으로 분석하였다. 비교결과, 기온 전망은 실측과 비슷한 경향성을 보였으나 강수량은 홍수기를 모의하지 못하는 것으로 나타났다. 시나리오 저감방법은 시나리오 분류(scenario cluster)방법과 시나리오 선정(scenario selection) 방법으로 구성된다. 시나리오 분류방법에서는 k-mean방법을 이용하여 5개의 cluster로 나누었으며, 시나리오 선정방법에서는 GCM 시나리오 선정기법을 조사 분석하여 연구방향과 목적에 따라 GCM 시나리오 선정기법을 선택할 수 있는 표를 제시하고, 이 중 시나리오의 확률밀도함수를 이용하는 PDF method를 적용하였다. 본 연구에서는 불확실성 정량화를 위해 maximum entropy를 이용하였다. 또한 시나리오 저감방법이 불확실성을 유지하는지 비교하기 위해 PDF method를 이용하여 정확성이 높은 순으로 5개의 GCM 시나리오를 선정(best 시나리오)하여 불확실성을 정량화하였다. GCM 시나리오의 분산을 이용하여 maximum entropy를 산정한 결과, 20C3M 배출시나리오에서는 모든 시나리오의 entropy는 3.08, 시나리오 저감방법은 2.75, best 시나리오는 2.28이었으며, 이는 시나리오 저감방법은 모든 시나리오의 89.3%의 불확실성을 설명하고 있으나 best 시나리오는 74.0%밖에 설명하지 못한다는 것을 나타낸다. A & B 배출시나리오에서도 시나리오 저감 방법을 사용한 GCM 시나리오가 best 시나리오보다 모든 시나리오의 불확실성을 더 잘 설명하는 것으로 나타났다. 이와 같이 수많은 GCM 시나리오를 사용하는 것보다 몇 개의 대표 시나리오를 이용하여 기후 변화 불확실성을 유지하면서 미래전망을 할 수 있다면, 매우 효율적으로 기후변화 연구를 수행할 수 있을 것으로 사료된다.

  • PDF

Where is the Dark Matter in the Double Radio Relic Galaxy Cluster PLCKG287.0+32.9?

  • Finner, Kyle;Jee, Myungkook J.;Dawson, William;Golovich, Nathan;Gruen, Daniel;Lemaux, Brian;Wittman, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2017
  • Diffuse radio relics are often detected in merging galaxy clusters and are emitted by synchrotron process. Radio relics are believed to trace the shock waves in the intracluster medium induced by ram pressure during a major cluster merger. Radio halos and relics are found in approximately 50 galaxy clusters to date that are all in a state of merging. The rarest of these galaxy clusters contain pairs of relics of similar brightness as well as a radio halo. The massive galaxy cluster PLCKG287.0+32.9 belongs to this rare population and is the second most significant detection from the Planck SZ All-sky Survey. Perhaps even more intriguing is that the radio relics are observed at vastly different distances from the X-ray peak requiring a complex merging scenario. In this study, we use weak-lensing to peer deeper into the merging scenario by reconstructing the dark matter distribution. We relate the mass distribution to the radio, X-ray, and optical emissions to provide constraints for future simulations of the merger. Fitting an NFW profile to the tangential shear we infer the mass of the cluster and discuss its implications for the merging scenario.

  • PDF

Deciphering Diverse Color Distribution Functions of Globular Cluster Systems

  • Lee, Sang-Yoon;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.33.2-33.2
    • /
    • 2015
  • The color distribution functions (CDFs) of globular clusters (GCs) in individual early-type galaxies show great diversity in their morphology. Based on the conventional "linear" relationship between colors and metallicities of GCs, the inferred GC metallicity distribution functions and thus their formation histories should be as diverse as they appear. In contrast, an alternative scenario rooted in the "nonlinear" nature of the color-to-metallicity transformation finds the various CDFs pointing systematically to a simple picture, i.e., such a high degree of variety stems predominately from only one parameter, the mean metallicity of GCs. The simulated CDFs of GCs aimed to reproduce 67 massive early-type galaxies from the ACS Virgo & Fornax Cluster Survey show that over 70% of the CDFs concur fully with the nonlinearity scenario. We discuss our new findings in terms of early-type galaxy formation in the cluster environment.

  • PDF

The Study on the Strategy for the Formation of the Innovation Clusters - Focused on the Scenario Planning of the 'Pankyo TechnoValley'- (기술혁신 클러스터 구축의 전략방향 설정에 관한 연구 - '판교 테크노밸리' 시나라오 플래닝을 중심으로 -)

  • Lee, Won-Il;Yim, Deok-Soon;Lee, Yeon-Hee;Jung, Eui-Jeong
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.2
    • /
    • pp.301-319
    • /
    • 2011
  • This research focused on the strategy consulting of the 'Pankyo Technovalley' for the formation of the innovation clusters The study was performed based on both theoretical study and related qualitative study approaches. Particularly, 'scenario planning' as a foresight method was used for the strategy formulation of the innovation clusters. The major determinants for the success of the formation of the innovation clusters can be summarized as follows; the enhancement of the service of the host institution of clusters, the alignment of the national cluster policy with the strategy of the host institution and the networks of the clusters. In terms of the needs of times, this study regarding the strategy for the formation of the innovation clusters is anticipated to be a good reference for the R&D organizations and technology cluster participants in coming years.

  • PDF

Optimize TOD Time-Division with Dynamic Time Warping Distance-based Non-Hierarchical Cluster Analysis (동적 타임 워핑 거리 기반 비 계층적 군집분석을 활용한 TOD 시간분할 최적화)

  • Hwang, Jae-Yeon;Park, Minju;Kim, Yongho;Kang, Woojin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.113-129
    • /
    • 2021
  • Recently, traffic congestion in the city is continuously increasing due to the expansion of the living area centered in the metropolitan area and the concentration of population in large cities. New road construction has become impossible due to the increase in land prices in downtown areas and limited sites, and the importance of efficient data-based road operation is increasingly emerging. For efficient road operation, it is essential to classify appropriate scenarios according to changes in traffic conditions and to operate optimal signals for each scenario. In this study, the Dynamic Time Warping model for cluster analysis of time series data was applied to traffic volume and speed data collected at continuous intersections for optimal scenario classification. We propose a methodology for composing an optimal signal operation scenario by analyzing the characteristics of the scenarios for each data used for classification.

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Making the Invisible Visible: Dark Matter Mapping of the Merging Galaxy Cluster ZwCl 1447.2+2619 via Weak Lensing

  • Lee, Juheon;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2018
  • ZwCL 1447.2+2619 is a merging galaxy cluster at z=0.37 with clear substructures in X-ray emission and galaxy distribution. In addition, the system possesses distinct radio relics. In order to constrain the merger scenario, it is necessary to measure both the distribution and mass of the cluster dark matter. We perform a weak lensing analysis of ZwCL 1447.2+2619 using Subaru imaging data. After carefully addressing instrumental systematics, we detect significant lensing signals. In this talk, our methodology, weak lensing results, and possible merging scenarios will be presented.

  • PDF