• Title/Summary/Keyword: scattering rays

Search Result 88, Processing Time 0.024 seconds

Non-invasive Blood Glucose Detection Sensor System Based on Near-Infrared Spectroscopy (근적외선 분광법 기반 비침습식 혈당 검출 센서 시스템)

  • Kang, Young-Man;Han, Soon-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.991-1000
    • /
    • 2021
  • Among non-invasive blood glucose detection technologies, the optical technique is a method that uses light reflection, absorption, and scattering characteristics when passing through a biological medium. It reduces pain or discomfort in measurement and has no risk of infection. So it is becoming a major flow of blood glucose detection research. Among them, near-infrared spectroscopy has a disadvantage in that the complexity increases when analyzing signals detected due to interferences between proteins and acids that share a similar absorption function with blood glucose molecules. In this study, a non-invasive sensor system with multiple near-infrared bands was designed and manufactured to alleviate the deterioration of blood glucose detection function that may occur due to skin absorption of near-infrared rays. A blood survey was conducted to verify the system, and the degree of blood glucose response in the blood was collected as spectral data, and the results of this study were quantitatively verified in terms of correlation between the data and blood glucose.

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Development of a Sunscreen Stick Formulation which is Water Resistant but Easily Washable

  • Choi, Minsung;Song, Seungjin;Kang, Nae-Gyu
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2020
  • The aim of this study is to develop a sunscreen stick formulation technology with excellent water resistance and washability. Consumers' needs for sunscreen products are diversifying. Water resistance and ease of washing are both important factors in sunscreen products. However, it is difficult to develop a sunscreen formulation that satisfies these two factors at the same time, because these two elements are in conflict. Fatty acid has a hydrophobic property against the water with low or neutral pH, but when it contacts with soapy water which has high pH, saponification occurs and the fatty acids become surfactants and can be dispersed in the water. Using the reaction characteristics of fatty acids, we can make sunscreen that is highly resistant to water or sweat, but is only selectively removed from soapy water. We found that the sunscreen stick containing fatty acids had better water resistance and washability than the sunscreen sticks without fatty acid. The sunscreen stick containing fatty acids showed a tendency to improve water resistance by scattering ultraviolet rays of long wavelength area by forming insoluble precipitation with divalent ions in tap water after immersion. In addition, an increase in the fatty acid content tended to also increase the ease of cleaning the sunscreen stick. Solid fatty acid was advantageous in improving water resistance than liquid fatty acid, but there was no difference between solid fatty acids and liquid fatty acid in washability. When it comes to stability, the sunscreen stick using liquid fatty acids maintained a high hardness and melting point, and showed no sweating. Based on this study, it is possible to develop an easy washable sunscreen stick formulation technology that has excellent water resistance but is selectively removed only in soapy water.

Radiation safety for pain physicians: principles and recommendations

  • Park, Sewon;Kim, Minjung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Analysis of the Physical Properties of Ground before and after Low Flowing Grouting (저유동성 그라우팅 시공전후 지반의 물성변화 분석)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Kang, Won-Dong;Jung, Euiyoup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.115-127
    • /
    • 2019
  • The low-flow grouting injection technique, the target construction method for this study, is a method of pouring mortar into the ground by non-emission replacement principle, which can be expected to increase the density of the ground, and, in some cases, be used as a base file using the strength of the high injection solids, along with low noise, low pollution, and high durability. To verify that the dynamic characteristics of the ground are improved by the low-flow injection technique, the test work was conducted on the site and physical tests were performed, and the quality of the improvement formed in the ground was verified through the indoor test on the core and core recovery rate was analyzed. The density logs test layer calculated the volume density of the ground layer by using the Compton scattering of gamma-rays, and the sonic logs was tested on the ground around the drill hole using a detector consisting of sonar and receiver devices inside the drill hole. As a result of the measurement of the change in physical properties (density and sonic logs) before and after grouting, both properties were basically increased after infusion of grout agent. However, the variation in density increase was greater than the increase in speed after grouting, and the ground density measurement method was thought to be effective in measuring the fill effect of the filler. Strength and core recovery rates were measured from specimens taken after the age of 28 days, and the results of the test results of the diffusion and strength test of the improved products were verified to satisfy the design criteria, thereby satisfying the seismic performance reinforcement.

Coincidence Summing Corrections in HPGe Gamma Ray Spectrometry in Marinelli-beakers with Efficiency (효율을 적용한 마리넬리 비이커에서 HPGe 감마선 분광분석법의 동시합성보정)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.557-563
    • /
    • 2018
  • Coincidence summing correction effects are known to be greater as the efficiency of the detector increases and as the distance between the source and the detector increases. A point source($^{60}Co$) was used to vary the distance in the direction of the detector's center axis and in the radial direction to obtain the P/T ratio for Coincidence summing correction calibration. In this study, values for coincidence summing corrected calibration of the values in the central and radial directions were applied to the mixed volume source(450 ml CRM source) to compare the overall peak efficiency change according to P/T with Geant4. In addition, the efficiency obtained from the mapping method is applied to the seaweed, a marine sample, and the compatibility of the P/T ratio with the detector and sample very dose together. The efficiency corrected to 1,836 keV was applied to the energy zone affected by the efficiency of 500 keV and the relative error of the measured and corrected values was well matcched by the 3.2 % peak efficiency correction. As with 450 mL CRM source, the larger the volume, the lower the P/T ratio was by ${\pm}5%$. This is due to the increased scattering of gamma-rays emitted as the source becomes farther away from the detector, and this change in P/T has been confirmed to affect the Coincidence summing corrected peak efficiency.

Preparation of Silica Coated Zinc Oxide and UV Protection Effect (이산화규소가 코팅된 산화아연의 제조와 자외선 차단 특성)

  • Kim, Won Jong;Kang, Kuk Hyoun;Lee, Gi Yong;Kim, Tae Won;Choi, Jong Wan;Lee, Dong Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • Due to the high UV light scattering effect of Zinc oxide (ZnO), it is frequently used in sunscreen skincare products. Recently ZnO coated with silica has been used in cosmetics to improve UV protection, texture, decreased photocatalytic activity, dispersibility and stability of the skin care product. In this study, we developed a ZnO composite powder coated with silica for the future application to skincare products to block UV rays that could cause photoaging. To improve consumer's satisfaction rating, we used ZnO microparticles which are widely used in the cosmetics industry. The silica was coated using hydrothermal method with sodium silicate and acid hydrolysis. UV protection of the composite powder was analyzed by UV-Vis and in-vitro test and the advantages for practical use of this powder as a skincare product were determined.

Evaluation of Image Quality When Using Grid During Child Chest X-Ray Examination (소아 흉부검사 시 격자 사용에 따른 영상 화질 평가)

  • Jeung, Seung-Hun;Han, Beom-Hul;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.371-376
    • /
    • 2017
  • Since in case of children, they are sensitive to the radiation compared to the adult and the potential exposure damage lasts longer, the exposure dose should be managed better than for the adult. Therefore, this study was conducted to observe the change in the chest x-ray image by the use of grid, which eliminates the scattering rays but increases the exposure dose during the child chest x-ray examination. As a research method, SNR, CNR and V. Vuichi were measured at 100 cm and 180 cm with the grid varying the kVp to 70, 90 and 110. In addition, SNR, CNR and V. Vuichi were measured fixing 100 cm and 180cm without grid and varying the dose to 6, 8 and 10 mAs. In the results of measuring them by fixing kVp, SNR, VNR and V. Vuichi were represented high when FID is 100cm. And in the results of meaduring them varying mAs, SNR, VNR and V. Vuichi were represented high when FID is 100cm. Currently in our country, the chest x-ray examination is performed at 180 cm. However, as the image is measured high when FID is 100 cm, in case of child, FID is deemed to be 100 cm.