• Title/Summary/Keyword: scattering rays

Search Result 87, Processing Time 0.024 seconds

Electromagnetic Wave Propagation Characteristics from Large Scale Random Rough Surfaces (큰 규모의 불규칙 조면에 의한 전자파 전파 특성)

  • Yoon Kwang-Yeol;Chai Yong-Yoong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.393-399
    • /
    • 2006
  • In this paper we applied a ray tracing method to estimate the scattering characteristics from large scale random rough surfaces. For the electromagnetic field evaluation, we have used the diffracted coefficient of the knife edge diffraction for the diffracted rays and Fresnel's reflection coefficients in connection with reflected rays. In addition, we examine to search for the traced rays using the imaging method which can be obtained all rays to arrived at receivers accurately and the diffracted field from rough surfaces is considered. Numerical examples have been carried out for the scattering characteristics of an ocean wave-like rough surface and delay spread characteristics of a building-like surface. In the present work we have demonstrated that the ray tracing method is effective to numerical analysis of a rough surface scattering.

Black Matrix with Scattering Particles for the Enhancement of Visibility of Laser Beam (레이저 빔 시인성 향상을 위한 산란입자가 분산된 Black Matrix)

  • Park, June Buem;Shin, Dong-Kyun;Han, Seun Gjo;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.36-40
    • /
    • 2017
  • With an attempt to enhance the visibility of laser beam, we have investigated a black matrix with scattering particles by ray tracing simulations. As the scattering particle density is increased, the detected power by the receiver is increased, thereby enhancing the visibility. In reality, the visibility is reduced with increasing incident angle (away from the normal incidence) of laser beam, a phenomenon also observed by ray tracing simulations. It is due to the fact that the mean path is increased within a highly absorptive BM layer or a smaller number of rays hit the BM area when the incident angle is high. Embedding a number of scattering particles into BM may bring in crosstalk among pixels. However, it is negligible because scattered rays inside highly absorptive BM are re-scattered due to the high scattering particle density, decreasing the power of scattered rays into the active areas.

  • PDF

A Study on the Distribution of X-ray according to the Thickness of Soft Tissue in Radiography (X선촬영시(線撮影時) 연부조직(軟部組織) 두께에 따른 선량분포(線量分布)에 관(關)한 연구(硏究))

  • Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.11 no.2
    • /
    • pp.3-15
    • /
    • 1988
  • When X-rays were projected into a patient, there occured the phenomena such as penetration, absorption and scattering etc. The penetrating rays were recorded on films as X-ray image used for diagnosis but scattered rays caused the radiation hazard both to the patient, specialist and technicians. The soft tissue includes many organs which are sensitive to the radiation and in may occupy $40{\sim}50%$ of body weight. Therefore X-rays should be carefully projected to the patient and it is strongly recommended to analyse the distribution of X-rays, when ever the patient is exposed to X-rays. In this study, the distribution of X-ray according to the thickness, the radiation field and the tube voltages (kVp) in soft tissue, the following results were obtained: 1. Total transmitted rays which kept the step with X-ray tube voltage (kVp) increased in proportion to the increasing of X-ray tube voltage. 2. The scattered ray rate in the total transmitted ray was not significantly found with X-ray tube voltage. 3. The affecting factors of the scattered ray rate in total transmitted ray were shown through the radiation field and the thickness. 4. The dose of scattered ray by the angle was observed more in direction of primary ray ($0^{\circ}$) and back scattering ($160^{\circ}$) than in direction of $90^{\circ}$. 5. The more the distance from phantom to the patient should be less distribution of scattered ray.

  • PDF

Relationship between the Distribution of Space doses in X-ray Rooms and the "Inverse Square Law of Distance" (X선 촬영실 내 공간선량의 분포와 거리 역자승 법칙과의 관련성)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.301-307
    • /
    • 2013
  • In the present study, space doses generated during X-ray radiography of hand, head, and abdomen, etc. were examined and whether the intensity of space doses of scattering rays is attenuated by the "inverse square law of distance" was figured out. First, the space doses of X-ray with small amounts of generated scattering rays such as hand radiography were mostly attenuated by the "inverse square law of distance" and were not detected at all at a distance of 2m. Second, the space doses of X-ray with large amounts of generated scattering rays such as head or abdomen radiography attenuated in higher rates than the rates under the "inverse square law of distance" at distances ranging from 30cm to 1m from the center of the irradiation field and were attenuated by the "inverse square law of distance" at distances ranging from 1m to 2m. Therefore, in X-ray rooms, the subject should be at least 2m away from the center of the irradiation field in the case of hand radiography and X-ray exposure prevention actions using protective devices are required in the entire spaces of the X-ray rooms in the case of head or abdomen radiography.

Scattering Measurement of Syringe Shield Used in PET/CT (PET/CT실에서 사용되는 주사기 차폐체의 산란선 측정)

  • Jang, Dong-Gun;Park, Cheol-Woo;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.375-382
    • /
    • 2020
  • PET/CT is a medical equipment that detects 0.511 MeV of gamma rays. The radiation workers are inevitably exposed to ionizing radiation in the process of handling the isotope. Accordingly, PET/CT workers use syringe shields made of lead and tungsten to protect their hands. However, lead and tungsten are known to generate very high scattering particles by interacting with gamma rays. Therefore, in this study, we tried to find out the effect on the scattering particles emitted from the syringe shield. In the experiment, first, the exposure dose to the hand (Rod phantom) was evaluated according to the metal material (lead, tungsten, iron, stainless steel) using Monte Carlo simulation. The exposure dose was compared according to whether or not plastic is attached. Second, the exposure dose of scattering particles was measured using a dosimeter and lead. As a result of the experiment, the shielding rate of plastics using the Monte Carlo simulation showed the largest difference in dose of about 40 % in lead, and the lowest in iron, about 15 %. As a result of the dosimeter test, when the plastic tape was wound on lead, it was found that the reduction rate was about 15 %, 28 %, and 39 % depending on the thickness. Based on the above results, it was found that 0.511 MeV of gamma ray interacts with the shielding tool to emit scattered rays and has a very large effect on radiation exposure. However, it was considered that the scattering particles could be sufficiently removed with plastics with a low atomic number. From now on, when using high-energy radiation, the shielding tool and the skin should not be in direct contact, and should be covered with a material with a low atomic number.

The Intensity Scale of Multiple Scattering of X-rays in Non-Crystalline Solids (비정질 고체에 대한 X선의 다중 산란 강도)

  • 박성수;장윤식;류봉기;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • When the intensity of X-rays scattered from amorphous materials (very weakly absorbing materials) is measured using standard diffractometric technique, the intensity caused by multiple scattering is obtained in the measured X-ray intensity. Computer programs have been developed to estimate the intensity of the mul-tiple scattering obtained in vitreous SiO2 and B2O3 with various X-rays. Using the above computer program, the intensity ratios of multiple scattering to single scattering in vitreous SiO2 were 0.10~0.16% at CuK$\alpha$, 0.98~5.87% at MoK$\alpha$, and 1.88~17.86% at AgK$\alpha$ in the range of 2$\theta$=0~180$^{\circ}$. Therefore, pri-or to the structural analysis of vitreous SiO2 and B2O3 performed experimentally using X-ray diffractometric technique, the intensity data measured in MoK$\alpha$ and AgK$\alpha$ radiations must be corrected for multiple scattering effect.

  • PDF

Acceleration of the SBR Technique using Grouping of Rays (광선 그룹화를 이용한 SBR 가속기법)

  • Lee, Jae-In;Yun, Dal-Jae;Yang, Seong-Jun;Yang, Woo-Yong;Bae, Jun-Woo;Kim, Si-Ho;Myung, Noh-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.752-759
    • /
    • 2018
  • The SBR technique is one of the asymptotic high frequency method, where a dense grid of rays are launched and traced to analyze the scattering properties of the target. In this paper, we propose an accelerated SBR technique using grouping a central ray and 8 surrounding rays around the center ray. First, launched rays are grouped into groups consisting of a central ray and 8 surrounding rays. After the central ray of each group is preferentially traced, 8 surrounding rays are rapidly traced using the information of ray tracing for the central ray. Simulation result of scattering analysis for CAD models verifies that the proposed method reduces the computational time without decreasing the accuracy.

Real-time X-ray Scattering as a Nanostructure Probe for Organic Photovoltaic Thin Films

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.181-181
    • /
    • 2013
  • Recently, nanostructure and the molecular orientation of organic thin films have been largely paid attention due to its importance in organic electronics such as organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs). Among various methods, the diffraction and scattering techniques based on synchrotron x-rays have shown powerful results in organic thin film systems. In this work, we introduce the in-situ annealing system installed at PLS-II (Pohang Light Source II) for organic thin films by simultaneously conducting various x-ray scattering measurements of x-ray reflectivity, conventional x-ray scattering, grazing incidence wide angle x-ray scattering (GI-WAXS) and so on. Using the in-situ measurement, we could obtain real time variation of nanostructure as well as molecular orientation during thermal annealing in metal-phthalocyanine thin films. The variation of surface and interface also could be simultaneously investigated by the x-ray reflectivity measurement.

  • PDF

A ray-based approach to scattering from inhomogeneous dielectric objects (전파경로 투적에 의한 비균질 유전체의 전자파 산란)

  • Kim, Hyeongdong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.31-37
    • /
    • 1995
  • A ray-based approach is developed to calculate the scattering from inhomogeneous dielectric objects. This approach is a natural extension of the "shooting and bouncing ray(SBR)" technique developed earlier for calculating the radar cross section of cavity structures and complex targets. In this formulation, a dense grid of rays representing the incident field is shot toward the scatterer. The curved trajectory, amplitude, phase and polarization of the ray fields inside the inhomogeneous object are computed numerically based on the laws of geometrical optics. The contributions of the exting rays to the exterior scattered field are then calculated by using the equivalence principle in conjunction with " a ray-tube integration" scheme. The ray-based approach is applied for the effect of an arcjet plasma plume on satellite reflector performance and backscattering from inhomogeneous objects.

  • PDF

Radiations and Their Scattering by Matter (TEM 관련 이론해설 (4): 방사선의 종류와 물질에 의한 산란)

  • Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.33 no.4
    • /
    • pp.251-259
    • /
    • 2003
  • In this review, the sources and the characteristics of X-rays and electrons and their interactions with matters were described in terms of the atomic scattering factors. The geometrical diffraction conditions were taken into account in terms of Ewald spheres in reciprocal lattice spaces. The effects of the finite size of sources and detectors on diffractions were also considered.