• Title/Summary/Keyword: scattering prevention agent

Search Result 2, Processing Time 0.019 seconds

A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent (석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구)

  • Shin, Hyungyoo;Choi, Youngkue;Jeon, Boram;Ha, Jooyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.

A Study on Penetration Effect of Penetrating Hardener for Prevention of Scattering of Asbestos Building Materials (석면 건축자재의 비산 방지를 위한 침투성 경화제 침투 효과에 관한 연구)

  • Song, Tae-Hyeob;Park, Ji-Sun;Shin, Hyun-Gyoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.324-330
    • /
    • 2018
  • In accordance with the amendment of the Industrial Safety and Health Act of 2007, Korea completely prohibited the import, distribution and manufacture of asbestos like Europe and Japan. Accordingly, the current problem of asbestos is the safe maintenance and disposal of asbestos construction material, the disposal of asbestos, and the final disposal of asbestos building materials. In the past, Korea used 100,000 tons of asbestos every year, and the building materials using it exceeded 1 million tons per year. These asbestos building materials continued to be used until 2006, and the Ministry predicted that these materials would continue to be maintained until 2044. When the permeable hardening agent is applied to the asbestos building material installed in the pre-pretreatment step for the harmless treatment of the asbestos waste and the dismantling is carried out, the scattering of the asbestos is suppressed in the disassembling step, detoxification treatment conditions can be improved. Therefore, permeable hardeners should be stably penetrated into asbestos building materials. In this study, it is suggested that pre - pretreatment methods for the harmlessization of waste asbestos building materials with medium density level can be presented. In order to efficiently perform pre - treatment for chemical harmlessness in the future, the mixing ratio of permeable hardener and middle water Optimization is the most important factor.