• Title/Summary/Keyword: scattering distance

Search Result 175, Processing Time 0.025 seconds

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.382-388
    • /
    • 2004
  • The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Studies on the Measurements of Optical Parameters in Turbid Material by Light Scattering (혼탁 매질에서 광산란에 의한 광학적 파라미터들의 측정에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.151-156
    • /
    • 1995
  • The influences of fluorophor, scatterer, absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by laser induced fluorescence spectroscopy. It has been found that the effects of optical properties in scattering media by the optical parameters(${\mu}_{s}$, ${\mu}_{a}$, ${\mu}_{t}$). The value of scattering coefficient ${\mu}_{s}$ is large by means of the increasing particles of scatterer, it has been found that the slope decays exponentially as a function of distance from laser source to detector. It may also aid in designing the best model for oil chemistry, laser medicine and application of medical engineering.

Gold and silver plasmonic nanoprobes trace the positions of histone codes

  • Choi, Inhee;Song, Jihwan;Park, Hyunsung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.111-112
    • /
    • 2022
  • We visualized the distribution of heterochromatin in a single nucleus using plasmonic nanoparticle-conjugated H3K9me3 and H3K27me3 antibodies. Due to distance-dependent plasmonic coupling effects between nanoprobes, their scattering spectra shift to longer wavelengths as the distance between heterochromatin histone markers reduced during oncogene-induced senescence (OIS). These observations were supported by simulating scattering profiles based on considerations of particle numbers, interparticle distances, and the spatial arrangements of plasmonic nanoprobes. Using this plasmon-based colourimetric imaging, we estimated changes in distances between H3K9me3 and H3K27me3 during the formation of senescence-associated heterochromatin foci in OIS cells. We anticipate that the devised analytical technique combined with high-spatial imaging and spectral simulation will eventually lead to a new means of diagnosing and monitoring disease progression and cellular senescence.

A Study on Laser Induced Fluorescence and Coagulation in Particle Transport Mode (입자 이동 방식에서 Laser Induced Fluorescence와 뭉침에 관한 연구)

  • Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.340-346
    • /
    • 2006
  • The influences of fluorescence, scattering, and flocculation in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by the spectroscopy of laser induced fluorescence (LIF). The effects of optical properties in scattering media have been found by the optical $parameters({\mu}_s,\;{\mu}_a,\;{\mu}_t)$. Flocculation is an important step in many solid-liquid separation processes and is widely used. When two particles approach each other, interactions of several colloid particles can come into play which may have major effect on the flocculation and LIF process, The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of scatterer it has been found that the slope decays exponentially as a function of distance from laser source to detector. It may also aid in designing the best model for oil chemistry, biopharmaceutical products, laser medicine and application of medical engineering on LIF and coagulation in particle transport mode.

A Study on Monte Carlo Simulation by beam scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster (산업재해 방지를 위한 New Austria Tunnel Method 수지에서 빔산란에 의한 Monte Carlo 시뮬레이션에 관한 연구)

  • Nam, Sang-Sung;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-450
    • /
    • 2013
  • The influences of scatterer and absorber in turbid material by light scattering on silica fume of additive were interpreted for the scattered intensity and wavelength. The molecular properties have been studied by Monte Carlo simulation in resin of New Austria Tunnel Method. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_s$, ${\mu}_a$,${\mu}_t$). Monte Carlo Simulation method for modelling of light transport in the civil engineering and construction field was applied. The results using a phantom were discussed that the distance from source to detector is closer, and scattering intensity is stronger with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for coatings and corrosion for the durability of metal constructions.

Measurement of optical coefficients of multiple scattering media by using frequency domain spectroscopy (주파수 영역 분광법을 이용한 다중산란 매질의 광학계수 측정)

  • 전계진;윤길원;김건식;전성만;박승한
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.357-363
    • /
    • 1999
  • A frequency domain spectroscopic system was constructed to investigate the optical properties of multiple scattering media. The alternating current (AC) and phase lag components of backscattered light were measured by using the heterodyne detection method. Absorption and transport scattering coefficients were computed from the values based on diffusion theory. Predictions showed excellent matches in comparison with actual values of absorption and scattering. Predictable ranges of the optical coefficients were analyzed in terms of the distance between light source and detector, and modulation frequencies. A proposed compact experimental set-up using laser diodes can be utilized to estimate non-invasively the optical properties of multiple scattering media such as biological tissues.

  • PDF

A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method (경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구)

  • Lee, Jun-Hyeon;Lee, Seo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

Moisture Absorption of Granular Fertilizer and Its Distribution Characteristic in a Pneumatic Applicator (입제비료의 흡습과 송풍식 살포기에서의 비산특성)

  • Hong, J.H.;Kim, Y.J.;Rhee, J.Y.;Chung, J.H.;Kim, J.Y.;Kim, J.H.;Kim, T.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.389-394
    • /
    • 2006
  • The characteristic of moisture absorption of granular fertilizer was measured at several different opening sizes on the top cover of a hopper in a humid weather. The size of the opening was to represent the degree of looseness of sealing of the top cover of the hopper. The application distribution was characterized by the scattering distance of granular fertilizer with different degree of moisture absorption in a pneumatic granular fertilizer applicator. The moisture absorption rates were 12.92 and 12.26 mg of moisture an hour for one gram of each granular fertilizers of NPK 22-12-12 and 21-17-17, respectively. The moisture absorption increased linearly as the opening size increased. The median value of the scattering distance distribution decreased with time of absorption, however, it decreased very slowly after three hours of absorption.

Comparison Study of Experimental Neutron Room Scattering Corrections with Theoretical Corrections in RCL's Calibration Facility at KAERI (한국원자력연구소 중성자교정실에 대한 중성자산란보정인자 결정연구)

  • Yoon, Suk-Chul;Chang, Si-Young;Kim, Jong-Soo;Kim, Jang-Lyul;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.29-33
    • /
    • 1997
  • Neutron room scattering corrections that should be made when neutron detectors are calibrated with a $D_2O$ moderated $^{252}Cf$ neutron source in the center of a calibration room are considered. Such room scattering corrections are dependent on specific neutron source type, detector type, calibration distance, and calibration room configuration. Room scattering corrections for the responses of a thermoluminescence dosimeter and two different types of spherical detectors to neutron source in the Radiation Calibration Laboratory(RCL) neutron calibration facility at the Korea Atomic Energy Research Institute(KAERI) were experimentally determined and are presented. The measured room scattering results are then compared with theoretical results calculated by predicting room scattering effects in terms of parameters related to the specific configuration. Agreement between measured and calculated scattering correction is generally about 10% for three kinds of detectors in the calibration facility.

  • PDF

Measurements of Optical Constants of Biomedical Media Based on Time-Resolved Reflectance (시간 분해 반사율 측정에 의한 다중산란 매질의 광학 계수 측정)

  • Jeon, K.J.;Park, S.H.;Kim, U.;Yoon, K.W.;Kim, W.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.235-239
    • /
    • 1996
  • In recent years, the optical properties of multiple-scattering media like tissue have been studied for their potential applications in medicine. In this work the optical properties of multiple scattering media were investigated using the time-resolved reflectance measurement. The reflected light was measured by time-correlated single photon counting system. The transport scattering and absorption coefficient are related to the initial rapid decay and the subsequent decay in reflected light, respectively. Also the optical properties of the samples were measured by conventional method, ie., using continuous wave light. When the distance between the light source and the detector is over 8mm, the optical coefficient can be measured accurately using the suggested method.

  • PDF