• Title/Summary/Keyword: scattered dose

Search Result 169, Processing Time 0.022 seconds

The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator (선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화)

  • Bae, Seong-Cheol;Kim, Jun-Ho;Lee, Choul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Purpose: The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows elivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. Materials and Methods: The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for $5{\times}5cm\;to\;30{\times}30cm^2$ field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. Results: The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similer build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than $20{\times}20cm^2$ provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. Conclusion: The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose for regions near the skin surface. In this, the optimal spoiler thickeness of 1.2 cm and 1.8 cm were found at SSS of 7 cm for $10{\times}10cm^2$ field. The surface doses were measured 60% and 64% respectively. In addition, It showed so optimal that 94% and 94% at the depth of 0.4 cm and dmax respectively.

  • PDF

A Feasibility study on the Simplified Two Source Model for Relative Electron Output Factor of Irregular Block Shape (단순화 이선원 모델을 이용한 전자선 선량율 계산 알고리듬에 관한 예비적 연구)

  • 고영은;이병용;조병철;안승도;김종훈;이상욱;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A practical calculation algorithm which calculates the relative output factor(ROF) for irregular shaped electron field has been developed and evaluated the accuracy of the algorithm. The algorithm adapted two-source model, which assumes that the electron dose can be express as sum of the primary source component and the scattered component from the shielding block. Original two-source model has been modified in order to make the algorithm simpler and to reduce the number of parameters needed in the calculation, while the calculation error remains within clinical tolerance range. The primary source is assumed to have Gaussian distribution, while the scattered component follows the inverse square law. Depth and angular dependency of the primary and the scattered are ignored ROF can be calculated with three parameters such as, the effective source distance, the variance of primary source, and the scattering power of the block. The coefficients are obtained from the square shaped-block measurements and the algorithm is confirmed from the rectangular or irregular shaped-fields used in the clinic. The results showed less than 1.0 % difference between the calculation and measurements for most cases. None of cases which have bigger than 2.1 % have been found. By improving the algorithm for the aperture region which shows the largest error, the algorithm could be practically used in the clinic, since one can acquire the 1011 parameter's with minimum measurements(5∼6 measurements per cones) and generates accurate results within the clinically acceptable range.

  • PDF

Effect of Low Magnetic Field on Dose Distribution in the Partial-Breast Irradiation (부분유방 방사선조사 시 저자기장이 선량분포에 미치는 영향)

  • Kim, Jung-in;Park, So-Yeon;Lee, Yang Hoon;Shin, Kyung Hwan;Wu, Hong-Gyun;Park, Jong Min
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.208-214
    • /
    • 2015
  • The aim of this study is to investigate the effect of low magnetic field on dose distribution in the partial-breast irradiation (PBI). Eleven patients with an invasive early-stage breast carcinoma were treated prospectively with PBI using 38.5 Gy delivered in 10 fractions using the $ViewRay^{(R)}$ system. For each of the treatment plans, dose distribution was calculated with magnetic field and without magnetic field, and the difference between dose and volume for each organ were evaluated. For planning target volume (PTV), the analysis included the point minimum ($D_{min}$), maximum, mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$) and 107% ($V_{107%}$) of the prescribed dose, respectively. For organs at risk (OARs), the ipsilateral lung was analyzed with $D_{mean}$ and the volume receiving 20 Gy ($V_{20\;Gy}$), and the contralateral lung was analyzed with only $D_{mean}$. The heart was analyzed with $D_{mean}$, $D_{max}$, and $V_{20\;Gy}$, and both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$ and $D_{mean}$, respectively. For PTV, the effect of low magnetic field on dose distribution showed a difference of up to 2% for volume change and 4 Gy for dose. In OARs analysis, the significant effect of the magnetic field was not observed. Despite small deviation values, the average difference of mean dose values showed significant difference (p<0.001), but there was no difference of point minimum dose values in both sehll structures. The largest deviation for the average difference of $D_{max}$ in the outer shell structure was $5.0{\pm}10.5Gy$ (p=0.148). The effect of low magnetic field of 0.35 T on dose deposition by a Co-60 beam was not significantly observed within the body for PBI IMRT plans. The dose deposition was only appreciable outside the body, where a dose build-up due to contaminated electrons generated in the treatment head and scattered electrons formed near the body surface.

Estimation of Secondary Scattered Dose from Intensity-modulated Radiotherapy for Liver Cancer Cases (간암환자에 대한 세기조절방사선치료에서의 2차 산란선량평가)

  • Kim, Dong Wook;Sung, Jiwon;Lee, Hyunho;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Chung, Kwangzoo;Lim, Young Kyung;Shin, Donho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • We estimated secondary scattered and leakage doses for intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with liver cancer. Five liver patients were planned by IMRT, VMAT and TOMO. Secondary scatter (and leakage) dose and organ equivalent doses (OEDs) are measured and estimated at various points 20 to 80 cm from the iso-center by using radiophotoluminescence glass dosimeter (RPLGD). The secondary dose per Gy from IMRT, VMAT and TOMO for liver cancer, measured 20 to 80 cm from the iso-center, are 0.01~3.13, 0.03~2.34 and 0.04~1.29 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO for five patients, which is normalized by IMRT, measured as 75.24% and 50.92% for thyroid, 75.14% and 40.61% for bowel, 72.30% and 47.77% for rectum, 76.21% and 49.93% for prostate. The secondary dose and OED from TOMO is relatively low to those from IMRT and VMAT. OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT.

Shielding Capability Evaluation of Mobile X-ray Generator through the Production assembled Shield (일체형 방어벽 제작을 통한 이동형 엑스선 발생기의 차폐능 평가)

  • Kim, Seung-Uk;Han, Byeoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.895-908
    • /
    • 2018
  • As modern science is developed and advanced, examination and number of times using radiation are increasing daily. General diagnostic X-ray generator is installed on stationary form, But X-ray generator was developed because patient who is in the intensive care unit, operation room, emergency room can not move to general x-ray room. What we examine patient by x-ray generator is certainly necessary, So patient exposure is inevitable. but reducing radiation exposure is highly important matter about radiation technology, guardian, patient in the same hospital room, nurse etc. For this reason, rule regarding safety control of diagnostic x-ray generator revised for radiation worker, patient and protector proclaim that mobile diagnostic x-ray shield must placed in case of examine different location excluding operation room, emergency room, intensive care unit. But, radiogical technologist is having a lot of difficulties to examine with mobile x-ray generator, diagnostic x-ray shield partition, image plate and lead apron. So, when we use x-ray generator, we manufacture shield tools can be attached to the mobile x-ray generator On behalf of x-ray shield partition and conduct analysis and in comparison to part of body and distribution of dose rate and find way to reduce radiation exposure through distribution of dose rate of patient within the radiogical technologist, medical team. Mobile x-ray generator aimed at SHIMADZU inc. R-20, We manufactured equipment for shielding x-ray scattered x-ray by installing shielding wall from side to side based on support beam on the mobile x-ray generator. Shielding wall when moving can be folded and designed to expand when examine. Experiment measured five times in each by an angle for dose rate of eyes, thyroid, breast, abdomen and gonad on exposure condition of upper and lower extremity, chest, abdomen which is examined many times by mobile x-ray generator. We used dosimeter RSM-100 made by IJRAD and measured a horizontal dose rate by body part. The result of an experiment, shielding decreasing rate of the front and the rear showed 77 ~ 98.7%. Therefore using self-production shielding wall reduce scattered x-ray occurrence rate and confirm can decrease exposure dose consequently. Therefore, through this study, reduction result which is used shielding wall of self-production will be a role of shielding optimization and it could be answer about reduction of medical exposure recommended by ICRP 103.

A Study on Dose Distribution using Virtual Wedge in Breast Cancer (유방암 환자에서 가상 쐐기모양 보상체의 선량분포 특성에 대한 연구)

  • Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In the radiation therapy for breast cancer patients, wedge shaped compensators are essentially used to achieve appropriate dose distribution because of thickness difference according to breast shapes. Tangential Irradiation technique has usually been applied to radiation therapy for breast cancer patients treated with breast conservative surgery. When a primary beam is incident on wedge shaped compensators from medial direction In tangential irradiation technique, low energy scattered radiation is generated and gives additional dose to the breast surface. As a method to reduced additional dose to breast surface, the use of virtual wedge shaped compensator is possible. Eclipse radiation treatment planning (RTP) systems Installed at our institution have virtual wedge shaped compensator for radiation therapy treatment planning. The dose distributions of 15, 30, 45, 60 degree physical wedges and virtual wedges were measured and compared. Results showed that there was no significant differences In symmetry of $10{\times}10$ field among various wedge angles. When the transmission factor was compared, transmission factor Increased linearly as the wedge angle Increased. These results Indicates that the appilcation of virtual wedge in clinical use is appropriate.

  • PDF

High Energy Electron Dosimetry by Alanine/ESR Spectroscopy (Alanine/ESR Spectroscopy에 의한 고에너지 전자선의 선량측정)

  • Chu, Sung-Sil
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 1989
  • Dosimerty based on electron spin resonance (ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to 1 Gy. In water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies $(6\~21MeV)$ and therapeutic dose levels (1~60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by$2\~5\%$ than those calculated by nominal energy $C_E$ factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator.

  • PDF

Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin (감마선조사에 의한 돼지 피부장애에 cyclooxygenase-2의 발현변화)

  • Kim, Joong Sun;Park, Sunhoo;Jang, Won Seok;Lee, Sun Joo;Lee, Seung Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • The basic concepts of radiation-induced skin damage have been established, the biological mechanism has not been studied. In this study, we have examined the effects of gamma rays on skin injury and cyclooxygenase(COX)-2 expression. Gamma irradiation induced clinicopathological changes in a dose- and time-dependent manner in mini-pig skin. The histological changes were consistent with the changes in gross appearance at 12 weeks after irradiation. After three days' irradiation, apoptotic cells in the basal layer were found more frequently in irradiated skin than in normal skin, with the magnitude of the effect being dose-dependent. The thickness of the epidermis transiently increased 3 days after irradiation, and then gradually decreased, although changes in the epithelial thickness of the irradiated field were not observed with irradiation doses over 50 Gy. In the epithelium, there was an initial degenerative phase, during which the rate of basal cell depletion was dependent on the radiation dose (20-70 Gy). One week after irradiation, COX-2 expression was mostly limited to the basal cell layer and was scattered across these cells. High COX-2 expression was detected throughout the full depth of the skin after irradiation. The COX-2 protein is upregulated after irradiation in mini-pig skin. These histological changes associated with radiation exposure dose cause the increased COX-2 expression in a dose-dependent fashion.

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device (에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가)

  • Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

Evaluation of usability of the shielding effect for thyroid shield for peripheral dose during whole brain radiation therapy (전뇌 방사선 치료 시 갑상선 차폐체의 주변선량 차폐효과에 대한 유용성 평가)

  • Yang, Myung Sic;Cha, Seok Yong;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.265-272
    • /
    • 2014
  • Purpose : To reduce the radiation dose to the thyroid that is affected to scattered radiation, the shield was used. And we evaluated the shielding effect for the thyroid during whole brain radiation therapy. Materials and Methods : To measure the dose of the thyroid, 300cGy were delivered to the phantom using a linear accelerator(Clinac iX VARIAN, USA.)in the way of the 6MV X-ray in bilateral. To measure the entrance surface dose of the thyroid, five glass dosimeters were placed in the 10th slice's surface of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. In the same location, to measure the depth dose of the thyroid, five glass dosimeters were placed in the 10th slice by 2.5 cm depth of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. Results : Entrance surface dose of the thyroid were respectively 44.89 mGy at the unshield, 36.03 mGy at the bismuth shield, 31.03 mGy at the 0.5 mmPb shield and 23.21 mGy at a self-made 1.0 mmPb shield. In addition, the depth dose of the thyroid were respectively 36.10 mGy at the unshield, 34.52 mGy at the bismuth shield, 32.28 mGy at the 0.5 mmPb shield and 25.50 mGy at a self-made 1.0 mmPb shield. Conclusion : The thyroid was affected by the secondary scattering dose and leakage dose outside of the radiation field during whole brain radiation therapy. When using a shield in the thyroid, the depth dose of thyroid showed 11~30% reduction effect and the surface dose of thyroid showed 20~48% reduction effect. Therefore, by using the thyroid shield, it is considered to effectively protect the thyroid and can perform the treatment.