• Title/Summary/Keyword: scanning microscopy

Search Result 5,709, Processing Time 0.044 seconds

Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites (측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가)

  • Donghyeon Lee;Ga In Cho;Hyung Mi Lim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2024
  • Graphene oxide (GO), known for its high stiffness, thermal conductivity, and electrical conductivity, is being utilized as a reinforcement in nanocomposite materials. This study evaluates the mechanical properties of epoxy nanocomposites incorporating GO and edge modified GO (E-GO), which has hydroxyl groups substituted only on its edges. GO/E-GO was uniformly dispersed in epoxy resin using ultrasonic dispersion, and mechanical properties were assessed through tensile testing. The results showed that the addition of nanoparticles increased both tensile strength and toughness. The tensile strength of the epoxy without nanoparticles was 74.4 MPa, while the highest tensile strength of 90.7 MPa was observed with 0.3 wt% E-GO. Additionally, the modulus increased from 2.55 GPa to 3.53 GPa with the addition of nanoparticles. Field emission scanning electron microscopy of the fracture surface revealed that the growth of cracks was impeded by the nanoparticles, preventing complete fracture and causing the cracks to split in multiple directions. E-GO, with surface treatment only on the edges, exhibited higher mechanical properties than GO due to its superior dispersion and surface treatment effects. These results highlight the importance of nanoparticle surface treatment in developing high-performance nanocomposite materials.

Preparation of Vinyl Waste-derived Separator and Enhancement of Electrochemical Performance using Electrospinning and Plasma Treatment (전기방사와 산소 플라즈마 처리를 활용한 폐비닐 기반의 분리막 합성 및 전기화학적 성능 향상 연구)

  • Chan-Gyo Kim;Yoon-Ho Ra;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, vinyl waste, which is the cause of environmental pollution, is recycled via an electrospinning method and applied as a separator that can be employed for energy storage devices. In detail, vinyl wastes are dissolved in a solution containing p-xylene and cyclohexanone, followed by electrospinning to obtain a vinyl waste-derived separator(VWS), and then the hydrophilic functional groups on the surface of VWS are introduced using a plasma treatment to improve wettability. Scanning electron microscopy analysis have verified that the shape and thickness of as-spun VWS vary depending on the concentration of vinyl waste. The surface hydrophility of VWS is modified by plasma treatment with applied powers ranging from 80 to 120W. The lowest contact angle is observed when the 100W power is applied to VWS(VWS-100W). In electrochemical analysis, the VWS-100W-based supercapacitor device shows the highest specific capacitance of 57.9 F g-1. This is ascribed to the high porosity achieved by electrospinning as well as the introduction of hydrophilic functional groups by the oxygen plasma treatment. In conclusion, vinyl waste is successfully recycled into separators for energy storage devices, suggesting a new way to reduce environmental pollution.

Characterization and Purification of Subtilosin A Produced by Bacillus vallismortis MCBL 1012 Isolated from Seasoned Dried Radish

  • Se-Yeon Lee;Dae-Ook Kang
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.576-587
    • /
    • 2024
  • In this study, diverse bacterial strains were isolated from fermented foods to screen those with antibacterial activity. Among them, one strain, identified as Bacillus vallismortis MCBL 1012 through 16S rRNA gene sequence analysis, was selected for its bacteriocin production. The culture supernatant of B. vallismortis MCBL 1012 showed antibacterial activity, mainly against Gram-positive bacteria. Scanning electron microscopy (SEM) revealed that bacteriocin treatment led to cellular content leakages in Listeria monocytogenes KCCM 40307, Enterococcus faecium KCCM 12118, and Streptococcus mutans KCTC 3065. PCR analysis confirmed B. vallismortis MCBL 1012 harbored subtilosin A gene (sbo A). Antibacterial activity was decreased by proteolytic enzymes like proteinase K, subtilisin A, and α-chymotrypsin. The bacteriocin demonstrated stability at 40℃ and 60℃ for 120 min, and up to 80℃ for 60 min, with rapid activity loss at 100℃. It retained full antibacterial activity within a pH range of 4.0 to 8.0 and was not affected by up to 100% organic solvents like ethanol, methanol, acetonitrile, and tetrahydrofuran. Nevertheless, activity decreased with more than 40% isopropanol and 80% acetone. Most tested inorganic salts and detergents had no effect on antibacterial activity except, CuSO4 and NiSO4 at specified concentrations. The bacteriocin exerted its antibacterial effect through bactericidal action against L. monocytogenes KCCM 40307. The bacteriocin was purified by ammonium sulfate precipitation, DEAE anion exchange chromatography, and RP-HPLC. The purification resulted in a final yield of 0.03% and a 283.7-fold increase in specific activity. MALDI-TOF MS analysis determined the exact molecular weight of purified bacteriocin to be 3,326.1 Da.

Bonding efficacy of cured or uncured dentin adhesives in indirect resin (간접 레진수복시 상아질 접착제의 중합 여부에 따른 결합 효능)

  • Jang, Ji-Hyun;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.6
    • /
    • pp.490-497
    • /
    • 2011
  • Objectives: This study examined the effect of the uncured dentin adhesives on the bond interface between the resin inlay and dentin. Materials and Methods: Dentin surface was exposed in 24 extracted human molars and the teeth were assigned to indirect and direct resin restoration group. For indirect resin groups, exposed dentin surfaces were temporized with provisional resin. The provisional restoration was removed after 1 wk and the teeth were divided further into 4 groups which used dentin adhesives (OptiBond FL, Kerr; One-Step, Bisco) with or without light-curing, respectively (Group OB-C, OB-NC, OS-C and OS-NC). Pre-fabricated resin blocks were cemented on the entire surfaces with resin cement. For the direct resin restoration groups, the dentin surfaces were treated with dentin adhesives (Group OB-D and OS-D), followed by restoring composite resin. After 24 hr, the teeth were assigned to microtensile bond strength (${\mu}TBS$) and confocal laser scanning microscopy (CLSM), respectively. Results: The indirect resin restoration groups showed a lower ${\mu}TBS$ than the direct resin restoration groups. The ${\mu}TBS$ values of the light cured dentin adhesive groups were higher than those of the uncured dentin adhesive groups (p < 0.05). CLSM analysis of the light cured dentin adhesive groups revealed definite and homogenous hybrid layers. However, the uncured dentin adhesive groups showed uncertain or even no hybrid layer. Conclusions: Light-curing of the dentin adhesive prior to the application of the cementing material in luting a resin inlay to dentin resulted in definite, homogenous hybrid layer formation, which may improve the bond strength.

Leaf epidermal microstructure of the genus Scopolia Jacq. s.l. (Solanaceae-Hyoscymeae) and its systematic significance (광의의 미치광이풀속(Scopolia Jacq. s.l., 가지과-Hyoscymeae족)의 잎표피 미세구조와 이의 계통분류학적 중요성)

  • Hong, Suk-Pyo;Paik, Jin-Hyub
    • Korean Journal of Plant Taxonomy
    • /
    • v.31 no.3
    • /
    • pp.267-282
    • /
    • 2001
  • To examine the leaf epidermal microstructure of three genera (Scopolia s.s., Anisodus, AtroPanthe, including Przewalskia as an outgroup) in the genera Scopolia Jacq. s.l., leaves of 10 species (37 specimens) were investigated by the light microscopy (LM) and scanning electron microscopy (SEM). The stomata of studied taxa were 'amphistomatic type' and the size (guard cell) range was $18-64{\times}11-48{\mu}m$. The size of stomata is slightly differed from between the taxa; the smallest size of stomata were found in the monotypic genus, Przewalskia ($24-27{\times}16-17{\mu}m$), on the other hand the largest one was found in Anisodus carniolicoides ($62-64{\times}43-48{\mu}m$). The stomatal complex was mostly anomocytic (in Scopolia s.s., Anisodus taxa : A. luridus, A. carniolicoides, A. acutangulus) and sometimes anisocytic (in Anisodus tanguticus, Przewalskia, Atropanthe). The stomata is mostly crescent in shape, but rarely circular, especially in Przewalskia tangutica. The shapes of epidermal cells are similar in both adaxial and abaxial sides, and mostly undulate/sinuate polygonal anticlinal wall, but rarely arched in Przewalskia tangutica. The epicuticular wax was not well developed in most studied taxa, except Anisodus tanguticus which is well developed cuticular striae around the stomatal complex. The elongate-headed glandular trichomes were found in Scopolia s.s. and Przewalskia. While the taxa of Anisodus and Atropanthe have not any trichomes (i. e., glabrous), except Anisodus luridus, which has simple or sometimes branched (dendritic- type) non-glandular trichome. Finally, the systematic and ecological significance of the leaf micromorphological features (stomata complex, trichome, etc.) in identification and elucidation of Scopolia s.l. including Przewalskia, especially between or within the genera including among the species is also discussed.

  • PDF

Ultrastructural and Histochemical Studies on the Epithelial Cells and Mucus-producing Cells of Korean Slug(Limax flavus L.) (한국산 노랑민달팽이(Limax flavus L.)의 표피상피세포와 점액형성세포에 관한 미세구조 및 조직화학적인 연구)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.18 no.2
    • /
    • pp.1-20
    • /
    • 1988
  • The species of the slug used in the experiment is Limax flavus L. For identifying the chemical characteristics of the epidermis, granules and mucus-producing cell of this animal is examined with methylene blue-basic fuchsin double stain and PAS-alcian blue reagent. For the ultrastructural research of the epidermal free surface, the epitheial cell and the parenchymal cell are used with scanning electron microscope and transmission elec-tron microscope respectively. I . Epidermal tissue The epidermal tissue of the slug is observed being divided into the dorsal and the ventral side(toot pad) respectively. 1) Dorsal epidermal tissue The dorsal epidermis of the slug is constituted with the simple columnar epithelium and the microvilli are compacted on the epidermal free surface. Two different types of the secretory granules of the neutral and the acid mucus are observed between the epithelial cells, and the neutral mucous granules are highest electron-dense but the acid mucous granules are observed to be electron-lucent. 2) Foot epidermal tissue The Foot epidermis is formed with the taller simple columnar epithelium than the dorsal epidermis and these cells have both a large number of the microvilli and a few number of the large villi. The secretory granules of three different types, which are acid, neutral and mixed mucous granule of two different types are observed between the epithelial cells. The neutral mucous granules are highest electron dense but the acid mucous granules are observed to be electron-lucent. II . Mucous granule-producing cell and mucus-producing cells Seven different types of the granules-producing cell and the mucus-producing cells are observed between the parenchyma. 1) A-type of acid mucous granule-producing cell The electron-lucent granules are largely occupied in the cytoplasm of these cells and then the granules are surrounded by irregular membrane. These electron-lucent granules exhibit alcianophilia with PAS-alcian blue reaction, so these granules are certified to be acid mucopolysaccharide. 2) B-type of acid mucus-producing cell The nucleus and the cytoplasm of these cells are pushed by the acid mucus of the electron-lucent toward the cell membrane. This mucus has been confirmed to be the acid mucopolysaccharide with PAS-alcian blue reagent. 3) A-type of neutral mucous granule-producing cell These cells contain the electron-dense round granules with approximately $1{\mu}m$ in diameter, which exhibit strongly PAS-positive reaction. These granules are confirmed to be the neutral mucoplysaccharide. 4) B-type of neutral mucous granule-producing cell These cells contain two different types of electron dense granules and electron-lucent granules; The former exhibits to be strongly PAS-positive and the latter to have alcianophilia reaction respectively. 5) C-type of neutral mucus-producing cell These cells are similar to the shape and the size of the B-type of mucus-producing cell but these two different types of cells are stained with reversing properties to each other. The mucus of the C-type cell that electron-lucent is largely occupied in the cytoplasm that exhibits strongly PAS-positive reaction. 6) D-type of neutral mucous granule-producing cell These cells contain round granules about $1{\mu}m$ in size which are observed to be medium electron-dense granules and those granules are stained brightly red with PAS-weak positive reaction. The granules are certified to be neutral mucopolysaccharide. 7) E-type of neutral mucous granule-producing cell These cells are similar to the shape and the size of the D-type of neutral mucous granule-producing cell. These cells contain a large number of granules with about $1{\mu}m$ in diameter showing electron-lucent and then granules are seen to be PAS-weak positive reaction. III. Parenchyma The clear cell and dark cell are found in the parenchyma of the Limax flavus L. 1) Clear cell These cells are round formed and the nucleus of the cells are larger than cytoplasm. These cells which have the electron-lucent cytosol possess poorly developed organelles. 2) Dark cell These cells are found to be dark cells due to high electron-density, which exhibit strongly methylene-blue reaction from double stain of methylene blue-basic fuchsin.

  • PDF

Developing a Dental Unit Waterline Model Using General Laboratory Equipments (실험실 일반 장비를 이용한 치과용 유니트 수관 모델 개발)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.284-292
    • /
    • 2016
  • Water supplied through dental unit waterlines (DUWLs) has been shown to contain high number of bacteria. To reduce the contamination of DUWLs, it is essential to develop effective disinfectants. It is, however, difficulty to obtain proper DUWL samples for studies. The purpose of this study was to establish a simple laboratory model for reproducing DUWL biofilms. The bacteria obtained from DUWLs were cultured in R2A liquid medium for 10 days, and then stored at $-70^{\circ}C$. This stock was inoculated into R2A liquid medium and incubated in batch mode. After 5 days of culturing, it was inoculated into the biofilm formation model developed in this study. Our biofilm formation model comprised of a beaker containing R2A liquid medium and five glass rods attached to DUWL polyurethane tubing. Biofilm was allowed to form on the stir plate and the medium was replaced every 2 days. After 4 days of biofilm formation in the laboratory model, biofilm thickness, morphological characteristics and distribution of the composing bacteria were examined by confocal laser microscopy and scanning electron microscopy. The mean of biofilm accumulation was $4.68{\times}10^4$ colony forming unit/$cm^2$ and its thickness was $10{\sim}14{\mu}m$. In our laboratory model, thick bacterial lumps were observed in some parts of the tubing. To test the suitability of this biofilm model system, the effectiveness of disinfectants such as sodium hypochlorite, hydrogen peroxide, and chlorhexidine, was examined by their application to the biofilm formed in our model. Lower concentrations of disinfectants were less effective in reducing the count of bacteria constituting the biofilm. These results showed that our DUWL biofilm laboratory model was appropriate for comparison of disinfectant effects. Our laboratory model is expected to be useful for various other purposes in further studies.

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea (전라남도 나주시 동강면 일대 황토(풍화잔류토)의 토양학적 및 광물학적 특성 연구)

  • Kim, Yumi;Bae, Jo-Ri;Kim, Cheong-Bin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • The objectives of this study were to characterize the physicochemical properties and mineralogy of Hwangto (yellow residual soils) from the southwestern part of Korea and to understand the soil-forming processes of the residual soils from their parent rocks. Both the yellowish residual soils as well as the unweathered and weathered parent rocks were obtained from Jangdong-ri, Donggang-myun, Naju, Jeollanam-do, Korea. The soil samples were examined to analyze the said soil's physicochemical properties such as color, pH, and particle size distribution. A scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were performed in order to understand the mineralogy, chemical composition, and morphology of the soils. Two thin sections of a parent rock were analyzed to study its mineral composition. A particle size analysis of the soils indicates that the residual soil consists of mainly silt and clay (approximately 95%) and that soil textures are silty clay or silt clay loam. The soil colors of the residual soil are dark brown (7.5YR 3/4) through yellowish red (5YR 4/6). The pH of the residual soil ranges from 4.3 to 5.1. The major minerals of the parent rocks were quartz, biotite, chlorite, and plagioclase. The mineralogy of the sand fraction of the residual soil was quartz, biotite, muscovite and sanidine. The mineralogy of the silt fraction of the residual soil was quartz, biotite, muscovite, Na-feldspar, K-feldspar, and sanidine. The clay mineralogy of the soil was goethite, kaolinite, ilite, hydroxy-interlayed vermiculite(HIV), vermiculite, mica, K-feldspar and quartz. The mineral composition of the residual soil and the parent rock indicates that feldspar and mica in the parent rock weathered into illite, vermiculite and hydroxy-interlayed vermiculite(HIV), and finally changed into kaolinite and halloysite in the yellowish residual soils.

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.