• Title/Summary/Keyword: scanning measurements

Search Result 741, Processing Time 0.032 seconds

Biological Applications of White Light Scanning Interferometry (백색광 주사간섭계의 생물학적 응용)

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.223-228
    • /
    • 2011
  • White light scanning interferometry has been employed to analyze surface features of diverse specimens. Long established in the field of materials engineering, the technique provides quantitative three-dimensional data as well as qualitative morphological images. It uses white light that is split and reflected from a reference mirror and an object. Merged together, the light generates interference patterns representing topographical contours of the object surface. The amplitude of the z-axis data is differentiated by gray scale. The technique allows the rapid, noncontact, and wide-field measurements for morphometry of biological specimens including chondrocytes, tooth enamel, and plant leaves. Quantification of the dimension of surface structures such as width, length, and elevation angle could be achievable by white light scanning interferometry. The light reflection from plant leaves has been assumed to be sufficient for the technique. Without special specimen preparations like conductive metal coating, the technique can be increasingly used for quantitative three-dimensional surface measurements of biological specimens.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Accuracy and reliability of 2-dimensional photography versus 3-dimensional soft tissue imaging

  • Ayaz, Irem;Shaheen, Eman;Aly, Medhat;Shujaat, Sohaib;Gallo, Giulia;Coucke, Wim;Politis, Constantinus;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Purpose: This study was conducted to objectively and subjectively compare the accuracy and reliability of 2-dimensional(2D) photography and 3-dimensional(3D) soft tissue imaging. Materials and Methods: Facial images of 50 volunteers(25 males, 25 females) were captured with a Nikon D800 2D camera (Nikon Corporation, Tokyo, Japan), 3D stereophotogrammetry (SPG), and laser scanning (LS). All subjects were imaged in a relaxed, closed-mouth position with a normal smile. The 2D images were then exported to Mirror® Software (Canfield Scientific, Inc, NJ, USA) and the 3D images into Proplan CMF® software (version 2.1, Materialise HQ, Leuven, Belgium) for further evaluation. For an objective evaluation, 2 observers identified soft tissue landmarks and performed linear measurements on subjects' faces (direct measurements) and both linear and angular measurements on all images(indirect measurements). For a qualitative analysis, 10 dental observers and an expert in facial imaging (subjective gold standard) completed a questionnaire regarding facial characteristics. The reliability of the quantitative data was evaluated using intraclass correlation coefficients, whereas the Fleiss kappa was calculated for qualitative data. Results: Linear and angular measurements carried out on 2D and 3D images showed excellent inter-observer and intra-observer reliability. The 2D photographs displayed the highest combined total error for linear measurements. SPG performed better than LS, with borderline significance (P=0.052). The qualitative assessment showed no significant differences among the 2D and 3D imaging modalities. Conclusion: SPG was found to a reliable and accurate tool for the morphological evaluation of soft tissue in comparison to 2D imaging and laser scanning.

Implications Deduction through Analysis of Reverse Engineering Process and Case Study for Prefabrication and Construction of Freeform Envelop Panels (비정형 건축물의 외장 패널의 선제작과 시공을 위한 역설계 프로세스와 사례 분석을 통한 시사점 도출)

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.579-585
    • /
    • 2016
  • 3D laser scanning can be used for scanning the freeform surface and building a model from which the measurements could be taken, in order to solve the difficulty with getting access to the exact freeform shape and position data of the complex building envelope. The shape making process using 3D scanning is as follows: point cloud, mesh surface segmentation, NURBS(Non-Uniform Rational B-spline) surface generation, and parametric solid model generation. In this research, we review previous studies, reverse engineering notion, importance of reverse engineering usage for freeform envelope, and previous cases in order to identify the detail reverse engineering process for prefabrication and construction of freeform panels using 3D laser scanning technology. Therefore, the purpose of this research is to present a basic information which should be considered during design and construction phase and improve quality and constructibility of freeform building by analyzing the reverse engineering process and case study for prefabrication and construction of freeform panels using 3D laser scanning. The research results will enable 3D shape engineering and design parameterization using reverse engineering to be used in various construction projects.

Development of An Automated Scanning Laser Doppler Vibrometer for Measurements of In-Plane Structural Vibration (평면 구조 진동 측정을 위한 자동화된 스캐닝 레이저 도플러 진동측정기의 개발 및 연구)

  • Kil, Hyun-Gwon
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1997
  • An automated scanning laser Doppler vibrometer (LDV) has been designed, and built to measure in-plane vibration fields over structures. Use of optical fibers allows the compact design of a laser probe head which can be scanned over the vibrating structures. An algorithm for automated self-alignment of the laser probe is developed. The system is completely automated for scanning over the structures, focusing two laser beams at each data point until the detected vibration signal is stable, and for recording and transferring the data to a system computer. The automated system allows one to get extensive data of the vibration field over the structures. The system is tested by scanning a piezoelectric cylindrical shell and a plate excited by a continuous signal and by a pulse signal, respectively. Results show that the automated scanning LDV system can be a useful tool to measure the in-plane vibration field and to detect the elastic waves propagating on the vibrating structures.

  • PDF

8 Beam Laser Diode Development for Laser Scanning Unit (Laser Scanning Unit을 위한 8빔 레이저 다이오드 개발)

  • Song, Dae-Gwon;Park, Jong-Keun;Kim, Jae-Gyu;Park, Jung-Hyun;So, Sang-Yang;Kwak, Yoon-Seok;Yang, Min-Sik;Choi, An-Sik;Kim, Tae-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.111-117
    • /
    • 2010
  • A 780 nm monolithic individually addressable 8-beam diode laser with 10mW optical power was developed for use in a laser scanning unit. Beam to beam spacing is $30\;{\mu}m$ and an air bridge interconnection process was developed for individual operations. From electrical and optical characteristic measurements, the developed device is a suitable optical source for a high speed laser scanning unit in multi-function printing systems and laser beam printers.

A Korean-American Comparative Study of 3D Scanned Female Anthropometric Data

  • Yi, Kyonghwa;Cynthia, L. Istook
    • Journal of Fashion Business
    • /
    • v.17 no.3
    • /
    • pp.74-84
    • /
    • 2013
  • The purpose of this research is to provide useable data for application in American and Korean apparel company. This data was developed by analyzing information of Korean and American body sizes obtained from "Size USA Project" and "Size Korea Project". The Subjects were 6,306 American females and 1,988 Korean females over 18 years old. 30 measurements and 14 computed values were chosen that were considered critical in making garments. And descriptive analysis, percentile analysis and t-test were used as statistical methods for analyzing measurements and computed value between the two countries. The results were as follows. It was determined that American women were larger and bigger than Korean women in all measurements and computed values, except for Shoulder Slope. Based on BMI values, we determined that American women had a distinct tendency towards being overweight. Through the comparison of drop values (i.e. the difference between Hip and Bust Girths or Hip and Waist Girths), ratio values (i.e. waist height divided by height) and Body Mass Index (BMI) between the two countries, we determined that American women's figures were shapelier than Korean women's. American women had higher hip heights and longer leg lengths for their height compared to Korean woman. Furthermore, the back shapes of Korean women were flatter than American women and BMI values indicated American women were relatively more overweight than Korean women.

Accuracy Improvement and Systematic Bias Analysis of Scanning White Light Interferometry for Free-form Surfaces Measurements (자유 곡면 형상 측정을 위한 백색광 주사 간섭계의 정확도 향상 및 시스템 오차 분석)

  • Ghim, Young-Sik;Davies, Angela;Rhee, Hyug-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.605-613
    • /
    • 2014
  • Scanning white-light interferometry is an important measurement option for many surfaces. However, serious profile measurement errors can be present when measuring free-form surfaces being highly curved or tilted. When the object surface slope is not zero, the object and reference rays are no longer common path and optical aberrations impact the measurement. Aberrations mainly occur at the beam splitter in the interference objective and from misalignment in the optical system. Both effects distort the white-light interference signal when the surface slope is not zero. In this paper, we describe a modified version of white-light interferometry for eliminating these measurement errors and improving the accuracy of white-light interferometry. Moreover, we report systematic errors that are caused by optical aberrations when the object is not flat, and compare our proposed method with the conventional processing algorithm using the random ball test.

Adsorption of H Atoms on the Si(111)$4{\times}1$-In Surface (Si(111)$4{\times}1$-In 표면에의 수소원자 흡착 연구)

  • Yu Sang-Yong;Lee Geun-Seop
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.139-144
    • /
    • 2006
  • Using scanning tunneling microscopy (STM) measurements, we studied the adsorption of hydrogen on the Si(111)$4{\times}1$-In surface at room temperature. The H atom features are found to be located between the two protrusions in one side of the $4{\times}1$ chain. The adsorbed H preferentially occupies one of the two zigzag In subchains, suggesting that the adsorption of H is influenced by the subsurface structure. The adsorbed H atom induces not only a localized distortion but also perturbs the distant region and results in a period-doubling modulations in the STM images. This H-induced perturbation differs from the Na-Induced perturbation on the same surface.

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok;Kang, Hun-Gu;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2623-2627
    • /
    • 2011
  • We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.