• Title/Summary/Keyword: scanning measurements

Search Result 741, Processing Time 0.028 seconds

Preparation of Seleinzed CuInSeS12T Thin Films P-type Conductivity (P형 전기전도도 특성을 갖는 $Selenized CuInse_2$ 박막의 제조)

  • 박성;김선재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.296-302
    • /
    • 1994
  • Polycrystalline CuInSeS12T thin were prepared by depositing Cu/In layer, which was sequentially sputtered varying the Cu/(Cu+In) mole ratio, on glass substrate and selenizing with selenium metal vapor in a nitrogen atmosphere. Compositional and structural, characterization was carried out by X-ray diffraction (XRD), wavelength-dispersive spectroscopy(WDS), and scanning electron microscope(SEM). Electrical characterization was carried out by the measurements of Hall effect, electrical resistivity. Large indium loss occurs in early stage of the selenization process. The selenized films which had mole ratios larger than 0.28 have chalcopyrite CuInSeS12T phase and these that had less mole ratios have sphalerite phase. The selenized films containing CuS1xTSe phase have Cu-rich CuInSeS12T phase and these that did not contain CuS1xTSe have In-rich CuInSeS12T phase. By optimizing the sputtering conditions,it is possible to fabricate CuInSeS12T thin films which have little secondary phases and an appropriate hole concentration (10S015T ~ 10S016TcmS0-3T) for solar cells.

Synthesis and Characterization of Cu2+-Perfluorophthalocyanine Incorporated SBA15

  • Oh, Mi-Ok;Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.10-15
    • /
    • 2006
  • After anchoring 3-(2-aminoethylamino)propyltriethoxysilane (APTES) onto the surfaces of the channels within ordered mesoporous silica, SBA-15, we dispersed $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. From small-angle X-ray scattering (SAXS) patterns and transmission electron microscopy (TEM) images, we confirmed that both the calcined and $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples possessed ordered periodic structures and hexagonal symmetry lattices (p6mm). The value of the $d_{100}$ spacing was decreased after the incorporation of $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. We used FTIR and UV-Vis spectroscopy and thermogravimetric analysis (TGA) to characterize both the modified SBA-15 and the $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples. From scanning electron microscopy (SEM) images and $N_2$ sorption measurements, we found that the $Cu^{2+}$-perfluorophthalocyanine units were incorporated within the modified SBA-15 channels, rather than on the external surfaces of the modified SBA-15 channels.

  • PDF

Improvement of Electrodeposition Rate of Cu Layer by Heat Treatment of Electroless Cu Seed Layer (Cu Seed Layer의 열처리에 따른 전해동도금 전착속도 개선)

  • Kwon, Byungkoog;Shin, Dong-Myeong;Kim, Hyung Kook;Hwang, Yoon-Hwae
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.186-193
    • /
    • 2014
  • A thin Cu seed layer for electroplating has been employed for decades in the miniaturization and integration of printed circuit board (PCB), however many problems are still caused by the thin Cu seed layer, e.g., open circuit faults in PCB, dimple defects, low conductivity, and etc. Here, we studied the effect of heat treatment of the thin Cu seed layer on the deposition rate of electroplated Cu. We investigated the heat-treatment effect on the crystallite size, morphology, electrical properties, and electrodeposition thickness by X-ray diffraction (XRD), atomic force microscope (AFM), four point probe (FPP), and scanning electron microscope (SEM) measurements, respectively. The results showed that post heat treatment of the thin Cu seed layer could improve surface roughness as well as electrical conductivity. Moreover, the deposition rate of electroplated Cu was improved about 148% by heat treatment of the Cu seed layer, indicating that the enhanced electrical conductivity and surface roughness accelerated the formation of Cu nuclei during electroplating. We also confirmed that the electrodeposition rate in the via filling process was also accelerated by heat-treating the Cu seed layer.

Preparation and Characterization of Zinc Oxide Prepared by Spray Pyrolysis Method (열분무법으로 제조된 산화아연의 제법과 확인(I))

  • Jin, Eui;Kim, Young Soon
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.638-645
    • /
    • 1998
  • By using the spray pyrolysis method, zinc oxide(ZnO) was produced from zinc acetate, the surface morphology of the prepared films was investigated by using scanning electron microscopy. The thickness of ZnO thin film was increased up to 460$^{\circ}C$ and it was 833 nm. The maximum wavelength of absorption was obtained at 365 nm, and the maximum peak of fluorescence at 475 nm and 505 nm. ZnO film have been characterized by XPS, XRD, and SEM. XRD results show that all the films are preferred orientation along the (002) plane which is depend on the substrate temperature. The optimal temperature to produce ZnO was determined at around 460$^{\circ}C$ from measurements of XPS, XRD and photocurrent. It was also shown that the homogeneous particles had the higher photocurrent.

  • PDF

Evaluation of thymolphthalein-grafted graphene oxide as an antioxidant for polypropylene

  • Bagheripour-Asl, Mona;Jahanmardi, Reza;Tahermansouri, Hasan;Forghani, Erfan
    • Carbon letters
    • /
    • v.25
    • /
    • pp.60-67
    • /
    • 2018
  • In the present work, capability of thymolphthalein-grafted graphene oxide, which was successfully synthesized in this study, in stabilization of polypropylene against thermal oxidation were investigated and compared with that of SONGNOX 1010, a commercially used phenolic antioxidant for the polymer. The modified graphene oxide were incorporated into polypropylene via melt mixing. State of distribution of the nanoplatelets in the polymer matrix was examined using scanning electron microscopy and was shown to be homogeneous. Measurements of oxidation onset temperature and oxidative induction time revealed that thymolphthalein-grafted graphene oxide modifies thermo-oxidative stability of the polymer in the melt state remarkably. However, the efficiency of the nanoplatelets in stabilization of polypropylene against thermal oxidation in melt state was shown to be inferior to that of SONGNOX 1010. Furthermore, oven ageing experiments followed by Fourier transform infrared spectroscopy showed that the modified graphene oxide improves thermo-oxidative stability of the polymer strongly in the solid state, so that its stabilization efficiency is comparable to that of SONGNOX 1010.

Effect of Heat-Treated Temperature on Surface Crystal Structure and Catalytic Activity of ACF/ZnO Composite under Ultraviolet Irradiation and Ultrasonication

  • Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • ACF/ZnO photocatalyst was synthesized by a sol-gel method using activated carbon fiber (ACF) and Zn $(NO_3)_2$ as precursors. Samples were characterized by Brunauer-Emmett-Teller measurements (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The XRD results showed that ACF/ZnO composites only included a hexagonal phase by heat-treated temperature at $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$. The SEM analysis revealed that the ACF/ZnO composites did not exhibit any morphological changes of the catalyst surface according to the different heat-treated temperatures. The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) solutions under ultraviolet (UV) light and ultrasonication respectively. The results showed that the photocatalytic activity of ACF/ZnO composites heat-treated at $500^{\circ}C$ was higher than other samples, which is ascribed to the fine distribution of ZnO particles on the surface of the ACF. In addition, an ultrasound of low power (50 W) was used as an irradiation source to successfully induce ACF/ZnO composites to perform sonocatalytic degradation of MB. Results indicated that the sonocatalytic method in the presence of ACF/ZnO composites is an advisable choice for the treatments of organic dyes.

Comparative analysis on digital models obtained by white light and blue LED optical scanners (백색광과 청색 LED 방식의 광학스캐너로 채득된 디지털 모형의 비교분석)

  • Choi, Seog-Soon;Kim, Jae-Hong;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze and compare the relative accuracy of digitized stone models of lower full arch, using two different scanning system. Methods: Replica stone models(N=20) were produced from lower arch acrylic model. Twenty digital models were made with the white light and blue LED($Medit^{(R)}$, Korea) scanner. Two-dimensional distance between the landmarks were measured on the Delcam $CopyCAD^{(R)}$(Delcam plc, UK). Independent samples t-test was applied for comparison of the groups. All statistical analyses were performed using the SPSS software package(Statistical Package for Social Sciences for Windows, version 12.0). Results: The absolute disagreement between measurements made directly on the two different scanner-based dental digital models was 0.02~0.04mm, and was not statistically significant(P>0.05). Conclusion: The precision of the blue LED optical scanner was comparable with the digitization device, and relative accuracy was similar. However, there still is room for improvement and further standardization of dental CAD technologies.

Dielectric Characteristics of Carbon Nitride Films on Quartz Substrate (석영기판에 증착된 질화탄소막의 유전특성)

  • Ha, Se-Geun;Lee, Ji-Gong;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.872-875
    • /
    • 2003
  • Carbon nitride($CN_x$) thin films were deposited on quartz substrates using reactive RF magnetron sputtering system at uarious deposition conditions and investigated dielectric characteristics. Samples for capacitance measurements were of the MIM(Metal-Insulator-Metal) type devices. Aluminum film electrodes were prepared by a vacuum thermal evaporation method before and after the deposition of carbon nitride films. Capacitances were measured by a FLUKE PM6306 RCL Meter at room temperature. Current-voltage(I-V) characteristics and resistivity were measured by a CATS CA-EDA semiconductor test and analyzer. The carbon nitride films showed ${\alpha}-C_3N_4$ and ${\beta}-C_3N_4$ etc. peaks through Raman and FTIR. Observed surface of film and side structure using SEM(Scanning Electron Microscope), and measured thickness of film by ${\alpha}-step$. We can find that the dielectric constant was the lowest value in 50% nitrogen ratio and the resistivity was the highest value in 70% nitrogen ratio.

  • PDF

Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film

  • Song, Young Il;Lee, Jung Woo;Kim, Tae Yoo;Jung, Hwan Jung;Jung, Yong Chae;Suh, Su Jeung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.255-258
    • /
    • 2013
  • Flexible transparent conducting films (TCFs) were fabricated by dip-coating single-wall carbon nanotubes (SWCNTs) onto a flexible polyethylene terephthalate (PET) film. The amount of coated SWCNTs was controlled simply by dipping number. Because the performance of SWCNT-based TCFs is influenced by both electrical conductance and optical transmittance, we evaluated the film performance by introducing a film property factor using both the number of interconnected SWCNT bundles at intersection points, and the coverage of SWCNTs on the PET substrate, in field emission scanning electron microscopic images. The microscopic film property factor was in an excellent agreement with the macroscopic one determined from electrical conductance and optical transmittance measurements, especially for a small number of dippings. Therefore, the most crucial factor governing the performance of the SWCNT-based TCFs is a SWCNT-network structure with a large number of intersection points for a minimum amount of deposited SWCNTs.

Characterization of Alumina Doped with Lanthanum and Pluronic P123 via Sol-Gel Process (고분자 P123와 란탄이 도핑된 알루미나의 특성 연구)

  • Jung, Mie-Won;Lee, Mi-Hoe
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.297-302
    • /
    • 2008
  • To direct the evolution of nanostructure and immobilize ${\gamma}-Al_2O_3$ catalyst, nanocrystalline La-doped-$Al_2O_3$ powder were prepared by the sol-gel process with addition of an amphiphilic block copolymer template (pluronic P123: $(poly(ethyleneoxide)_{20}-poly(propyleneoxide)_{70}-poly(ethyleneoxide)_{20})$. The dried gel is amorphous, whereas heating at temperature above $700^{\circ}C$ leads to the formation of nanocrystalline ${\gamma}$ and ${\delta}-Al_2O_3$ and these two phases is kept until $1100^{\circ}C$. ${\alpha}-A1_2O_3 $starts to form at $1200^{\circ}C$ with $LaAl_{11}O_{18}$. The surface morphology and crystal structure has been observed by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). Solid state $^{27}Al$ MAS NMR indicates two types of local environment, i.e. octahedral and tetrahedral sites. The surface area and pore size was compared among these powders using the BET nitrogen adsorption measurements.