• Title/Summary/Keyword: scanning measurements

Search Result 741, Processing Time 0.03 seconds

Sexual Size Dimorphism of the Mouthpart and Antenna of Cyllorhynchites ursulus in Korea (한국에 서식하는 도토리거위벌레(Cyllorhynchites ursulus) 구기 및 더듬이 길이의 성적이형성 연구)

  • Kim, Ji Young;Kim, Yung Kun;Lee, Yoo Ran;Lee, Eunok
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.515-520
    • /
    • 2017
  • Sexual dimorphism of the mouthpart, antenna and mandible of the Cyllorhynchites ursulus in South Korea was studied with linear measurements. The mouthpart and antenna measurements were conducted with a stereoscopic microscope using 122 specimens (72 males and 50 females). Microscopic observation of the mandible were conducted with a Field Emission Scanning Electron Microscope (FE-SEM) using 103 specimens (73 males and 30 females). Results showed that the size difference between males and females was significant in the size of the mouthpart and antenna. On the other hand, we could not detect sexual size dimorphism in the microstructure of the mandible. The bivariate plots made by the result of Principal Component Analysis (PCA) and Discriminant Analysis (DA) showed a size dimorphism in the size of the mouthpart and the antenna between males and females. Based on our study, sexual dimorphism in the mouthpart and antenna exists in C. ursulus from the South Korean population, and this difference seems to be related to the behavioral differences between males and females.

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

Synthesis and Characterization of Liquid Crystalline Polyurethanes Containing Aromatic Ring Moiety (방향족 고리를 갖는 액정폴리우레탄의 합성 및 특성)

  • Lee, Jong-Baek
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Polyurethanes containing no mesogenic unit were prepared by polyaddition reaction of homo- and copolyurethanes based on para-type 1,4-phenylene diisocyanate (1,4-PDI), 2,6-bis($\omega$-hydroxypentoxy)naphthalene (BHN5) with 1,4-bis($\omega$-hydroxypentoxy)benzene (BHB5). All copolyurethanes showed monotropic liquid crystallinity, when measurements were performed under shearing. For example, a polyurethane Poly(50/50, mol%) with $[\eta]$=0.32 dL/g exhibited liquid crystallinity in the temperature range from $223^{\circ}C$ to $211^{\circ}C$ in the cooling stage. In contrast, two homopolyurethanes exhibited no explicit mesomorphic behavior, which was observed by DSC (Differental Scanning calorimeter) and measurement and polarized microscopic observation. The mesomorphic behavior of synthesized polyurethane was identified and characterized by differential scanning calorimetry, polarized optical microscope and X-ray.

Comparative Study on NDT Techniques for Evaluation of Concrete Quality Exposed to Marine Environment (항만 상치 콘크리트 품질 관리를 위한 비파괴 스캐닝 기법 비교 연구)

  • Homin Song;Jiyoung Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.5
    • /
    • pp.177-184
    • /
    • 2024
  • Concrete, the primary material used in quay walls, is directly exposed to saline environments. Coping concrete, particularly in areas where periodic berthing and loading/unloading occur, is prone to rapid quality deterioration. Current facility safety and maintenance guidelines assess concrete durability at specific points through sampling, which are intended to represent the entire inspection unit. This paper explores quality management strategies from an areal perspective by applying various non-destructive scanning methods to extensive areas of coping concrete. Ultrasonic array imaging and ground-penetrating radar scanning images revealed significant quality degradation in berthing operation areas, whereas sampling-based ultrasonic pulse velocity and rebound hardness values were less effective in detecting this degradation.

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

Influence of the angles and number of scans on the accuracy of 3D laser scanning (3 차원 레이저 스캔영상 채득 시 스캔각도와 횟수에 따른 정확도)

  • Lee, Kyung-Min;Song, Hyo-Young;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.41 no.2
    • /
    • pp.76-86
    • /
    • 2011
  • Objective: To investigate whether the accuracy of 3D laser scanning is influenced by the angles and number of scans. Methods: Using a 3D laser scanner, 10 manikins with facial markers were scanned at 7 horizontal angles (front view and at $20^{\circ}$, $45^{\circ}$, and $60^{\circ}$ angles on the right and left sides). Three-dimensional facial images were reconstructed by 6 methods differing in the number and angles of scans, and measurements of these images were compared to the physical measurements from the manikins. Results: The laser scan images were magnified by 0.14 - 0.26%. For images reconstructed by merging 2 scans, excluding the front view; and by merging 3 scans, including the front view and scans obtained at $20^{\circ}$ on both sides; several measurements were significantly different than the physical measurements. However, for images reconstructed by merging 3 scans, including the front view; and 5 scans, including the front view and scans obtained at $20^{\circ}$ and $60^{\circ}$ on both sides; only 1 measurement was significantly different. Conclusions: These results suggest that the number and angle of scans influence the accuracy of 3D laser scanning. A minimum of 3 scans, including the front view and scans obtained at more than $45^{\circ}$ on both sides, should be integrated to obtain accurate 3D facial images.

Effect of repetitive firing on passive fit of metal substructure produced by the laser sintering in implant-supported fixed prosthesis

  • Altintas, Musa Aykut;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2020
  • PURPOSE. The aim of the present study was to investigate the passive fit of metal substructure after repetitive firing processes in implant-supposed prosthesis. MATERIALS AND METHODS. Five implants (4 mm diameter and 10 mm length) were placed into the resin-based mandibular model and 1-piece of screw-retained metal substructure was produced with the direct metal laser sintering (DMSL) method using Co-Cr compound (n = 10). The distance between the marked points on the multiunit supports and the marginal end of the substructure was measured using a scanning electron microscope (SEM) at each stage (metal, opaque, dentin, and glaze). 15 measurements were taken from each prosthesis, and 150 measurements from 10 samples were obtained. In total, 600 measurements were carried out at 4 stages. One-way ANOVA test was used for statistical evaluation of the data. RESULTS. When the obtained marginal range values were examined, differences between groups were found to be statistically significant (P<.001). The lowest values were found in the metal stage (172.4 ± 76.5 ㎛) and the highest values (238.03 ± 118.92 ㎛) were determined after glaze application. When the interval values for groups are compared with pairs, the differences between metal with dentin, metal with glaze, opaque with dentin, opaque with glaze, and dentin with glaze were found to be significant (P<.05), whereas the difference between opaque with metal was found to be insignificant (P=.992). CONCLUSION. Passive fit of 1-piece designed implant-retained fixed prosthesis that is supported by multiple implants is negatively affected by repetitive firing processes.

Evaluation and comparison of the marginal adaptation of two different substructure materials

  • Karaman, Tahir;Ulku, Sabiha Zelal;Zengingul, Ali Ihsan;Guven, Sedat;Eratilla, Veysel;Sumer, Ebru
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • PURPOSE. In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. MATERIALS AND METHODS. Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. RESULTS. According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, $24.47{\pm}5.82{\mu}m$ before and $35.11{\pm}6.52{\mu}m$ after cementation; in the laser-sintered Co-Cr structure, it was, on average, $60.45{\pm}8.87{\mu}m$ before and $69.33{\pm}9.03{\mu}m$ after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. CONCLUSION. Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings.

Thermal behavior and rheology of polypropylene and its blends with poly($\varepsilon$-caprolactone)

  • Chun, Yong-Sung;Minsoo Han;Park, Junghoon;Kim, Woo-Nyon
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2000
  • The crystallization behavior of homo polypropylene (PP) and PP in the PP-poly($\varepsilon$-caprolactone) (PCL) blends during isothermal crystallization has been investigated using differential scanning calorimeter (DSC) and advanced rheometric expansion system (ARES). From the storage modulus data of the homo PP and PP-PCL blends during isothermal crystallization, the volume fraction of crystallized material ($X_t$) of the homo PP and PP in the PP-PCL blends was calculated using the various rheological models. The results of $X_t$ of the homo PP and PP in the PP-PCL blends from ARES measurement were compared with the results from DSC. The $X_t$ of the homo PP was found to be higher in the ARES measurement than in the DSC. The crystallization rate of the homo PP was found to be faster in the rheological measurements than in the thermal analysis. The $X_t$ of PP in the PP-PCL blends with various compositions was obtained from the thermal analysis and rheological measurements. The $X_t$ of PP in the PP-PCL blends obtained from the thermal analysis and rheological measurements are not consistent. This discrepancy of $X_t$ may be due to the morphological changes resulted from the different crystallization kinetics of PP in the PP-PCL blends.

  • PDF