• Title/Summary/Keyword: scanning measurements

Search Result 741, Processing Time 0.03 seconds

Detection of voluminous gamma-ray source with a collimation beam geometry and comparison with peak efficiency calculations of EXVol

  • Kang, M.Y.;Sun, G.M.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2601-2606
    • /
    • 2020
  • In this study, we expanded the performance of the existing EXVol code and performed empirical experiments and calculations. A high-resolution gamma spectroscopy system was constructed, and a standard point source and a standard volume source were measured with an HPGe detector with 43.1% relative efficiency. EXVol was verified by quantitative comparison of the detection efficiencies determined by measurements and calculations. To introduce the concept of the detector scanning that occurs in the actual measurement into the EXVol code, a collimator was placed between the source and detector. The detection efficiency was determined in the asymmetric arrangement of the source and detector with a collimator. A collimator made of lead with a diameter of 15 mm and a thickness of 50 mm was installed between the source and the detector to determine the detection efficiency at a specific location. The calculation result was contour plotted so that the distribution of detection efficiency could be visually confirmed. The relative deviation between the measurements and calculations for the coaxial and asymmetric structures was 10%, and that for the collimation structure was 20%. The results of this study can be applied to research using γ-ray measurements.

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Synthesis and Structural Properties of $VO_2$ Thin Films

  • Jin, Zhenlan;Park, Changin;Hwang, Inhui;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.190.2-190.2
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) has been widely attracted for academic research and industrial applications due to its metal-insulator transition (MIT) temperature close to room temperature. We synthesized VOx film on (0001) sapphire substrate with vanadium target (purity: 99.9%) using DC magnetron sputtering in Ar ambience at a pressure of $10^{-3}$ Torr at $400{\sim}700^{\circ}C$. The VOx film subsequently was annealed at difference temperatures in ambience of Ar and $O_2$ gas mixture at $60{\sim}800^{\circ}C$. The structural properties of the films were investigated using scanning electron microscopic (SEM), x-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) measurements. SEM reveal that small grains formed on the substrates with a roughness surface. XRD shows oriented $VO_2$(020) crystals was deposited on the $Al_2O_3$(006) substrate. From I-V measurements, the electric resistance near its MIT temperature were dramatically changed by ${\sim}10^4$ during heating and cooling the films. We will also discuss the temperature-dependent local structural changes around vanadium atoms using XAFS measurements.

  • PDF

Clinical Validity of Tooth Size Measurements Obtained via Digital Methods with Intraoral Scanning

  • Mohammed, Alnefaie;Sun-Hyung, Park;Jung-Yul, Cha;Sung-Hwan, Choi
    • Journal of Korean Dental Science
    • /
    • v.15 no.2
    • /
    • pp.132-140
    • /
    • 2022
  • Purpose: Dental diagnostic records derived from study models are a popular method of obtaining reliable and vital information. Conventional plaster models are the most common method, however, they are being gradually replaced by digital impressions as technology advances. Moreover, three-dimensional dental models are becoming increasingly common in dental offices, and various methods are available for obtaining them. This study aimed to evaluate the accuracy of the measurement of dental digital models by comparing them with conventional plaster and to determine their clinical validity. Materials and Methods: The study was conducted on 16 patients' maxillary and mandibular dental models. Tooth size (TS), intercanine width (ICW), intermolar width (IMW), and Bolton analysis were taken by using a digital caliper on a plaster model obtained from each patient, while intraoral scans were manually measured using two digital analysis software. A one-way analysis of variance test was used to compare the dental measurements of the three methods. Result: No significant differences were reported between the TS, the ICW and IMW, and the Bolton analysis through the conventional and two digital groups. Conclusion: Measurements of TS, arch width, and Bolton analysis produced from digital models have shown acceptable clinical validity. No significant differences were observed between the three dental measurement techniques.

Preparation of Silica Hollow Composite Particles

  • Lee, Dong Hoon;Lee, Chang Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3303-3306
    • /
    • 2014
  • A facile and effective approach has been developed to prepare hybrid hollow microspheres, via consecutive processes of pickering mini-emulsion polymerization for core-shell formation, and calcination of the sacrificial core. The resulting hollow composite particles have mono-layered shells. The morphology and size characteristics of synthesized composite particles were investigated, using dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements.

Hierarchically Structured, Functionalized Graphenes for a Highly Reversible Capacitive Charge Storage

  • Yu, Xu;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.491.1-491.1
    • /
    • 2014
  • Heteroatom phosphorous-doped graphene aerogel (PGA) with high surface area is successfully synthesized via hydrothermal method for high power and energy supercapacitors, including the advantage of three dimensional internetwork and constitutive graphene skeletons. The morphology of PGA was investigated by the scanning electron microscope, transmission electron microscope. The chemical structure and circumstances were confirmed by Raman and X-ray photoelectron spectroscopy, the phosphorus is successfully incorporated with the graphene sheets. As evidenced by electrochemical measurements, cyclic voltammetry and galvanostatic charge discharge, the hierarchically PGA has an unprecedented high capacitance, which contributes to the excellent high-rate performance of this material for supercapacitor application.

  • PDF

Positron Annihilation Study of Vacancy Type Defects in Ti, Si, and BaSrFBr:Eu

  • Lee, Chong Yong
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.85-87
    • /
    • 2016
  • Coincidence Doppler broadening and positron lifetime methods in positron annihilation spectroscopy has been used to analyze defect structures in metal, semiconductor and polycrystal, respectively. The S parameter and the lifetime (${\tau}$) value show that the defects were strongly related with vacancies. A positive relationship existed between the scanning electron microscope (SEM) images and the positron annihilation spectroscopy (PAS). According to the SEM images and PAS results, measurements of the defects with PAS indicate that it was more affected by the defect than the purity.

Characterization of Interface in Hybrid Composites (혼성복합재료의 계면 특성 분석)

  • Ha, Chang-Sik;Ahn, Ki Youl;Cho, Won-Jei
    • Journal of Adhesion and Interface
    • /
    • v.1 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • In this article, the characterization of the interface of hybrid composites was discussed. Interfacial interaction in organic/inorganic hybrid composites, especially silica-containing hybrids can be characterized by fluorescence spectroscopy, small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and $^{29}Si$ NMR spectroscopy measurements.

  • PDF

Simple fiber tip assembly with flexible Quality factor (유연한 Quality factor가 가능한 단순한 광섬유 팁 공진 구조물)

  • 나경필;권오대
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.260-261
    • /
    • 2002
  • For Near-field Scanning Optical Microscopy measurements, the fiber tip is glued on the side of one of the tuning fork prongs vertically to its extended direction. Higher Q-factor is attainable in this geometry than in the arrangement with the fiber tip parallel to the prong. A simple mechanical design is applied to hold the fiber tip above the gluing point. The overall tuning fork-fiber tip assembly gives another advantage of the flexible Q-factor enhancement. With this treatment, Q-factor higher than 3000 is easily achievable. As an operating instance, a grating is scanned for its one dimensional topographical image.

  • PDF

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.