• Title/Summary/Keyword: scanning electron spectroscopy (SEM)

Search Result 1,163, Processing Time 0.033 seconds

Study on Methods of Enhancement and Measurement of Corrosion Resistance for Subsea Equipment made of Aluminum (알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상 방법 및 측정 방법 조사)

  • Seo, Youngkyun;Jung, Jung-Yeul
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.47-52
    • /
    • 2020
  • This study investigated the methodologies to enhance the corrosion resistance and the ways to measure for subsea equipment made of aluminum. The methodologies for the anticorrosion were cathodic protection, conversion coating, anodizing and organic coating. The simply analyzed ways to measure the corrosion resistance were Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), Glow discharge optical emission spectrum spectroscopy (GD-OES), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Vibrating Electrode Technique (SVET), contact angle and interfacial tension. The most widely used tools for increasing the corrosion resistance were the anodizing and the organic coating. Many ways were evenly used to measure corrosion. The methods more frequently utilized were SEM for the surface investigation and the contact angle to evaluate the corrosion resistance.

The Formation Technique of Thin Film Heaters for Heat Transfer Components (열교환 부품용 발열체 형성기술)

  • 조남인;김민철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.31-35
    • /
    • 2003
  • We present a formation technique of thin film heater for heat transfer components. Thin film structures of Cr-Si have been prepared on top of alumina substrates by magnetron sputtering. More samples of Mo thin films were prepared on silicon oxide and silicon nitride substrates by electron beam evaporation technology. The electrical properties of the thin film structures were measured up to the temperature of $500^{\circ}C$. The thickness of the thin films was ranged to about 1 um, and a post annealing up to $900^{\circ}C$ was carried out to achieve more reliable film structures. In measurements of temperature coefficient of resistance (TCR), chrome-rich films show the metallic properties; whereas silicon-rich films do the semiconductor properties. Optimal composition between Cr and Si was obtained as 1 : 2, and there is 20% change or less of surface resistance from room temperature to $500^{\circ}C$. Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used for the material analysis of the thin films.

  • PDF

A Study on the Ignition and Molten Mark Analysis of Ballast for Fluorescent Lamp (형광등용 안정기의 발화 및 용융흔 분석에 관한 연구)

  • 최충석;박창수;김혁수;김향곤;정재희
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.173-177
    • /
    • 1998
  • In this paper, we reported an outbreak of fire hazard of ballast for fluorescent lamp. The surface structure and composition of ballast coil analyzed by using metallurgical microscope, scanning electron microscope(SEM) and energy dispersive x-ray spectroscopy(EDX). The surface of molten mark appeared columnar structure and void. EDX analysis indicated that the molten mark spectra were composed not only of the corresponding original spectra but also of several new lines.

  • PDF

A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating (HCD이온플레이팅 방법을 이용한 zzTiC코팅에 관한 연구)

  • 김인철;서용운;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.875-882
    • /
    • 1992
  • Titanium carbide(TiC) films, known as having excellent characteristics of resistance to wear and corrosion, were deposited on SUS-304 sheets using HCD(Hollow Cathode Discharge) reactive ion plating with acetylene gas as the reactant gas. The characteristics of TiC films were examined by X-ray diffraction, micro-Vickers hardness tester, ${\alpha}$-step, SEM(Scanning Electron Spectroscopy), ESCA(Electron Spectroscopy for Chemical Analysis), and AES(Auger Electron Spectroscopy) and the results were discussed with regard to the changes of various deposition conditions(bias voltage, acetylene flow rate, temperature).

Positron Annihilation Study of Vacancy Type Defects in Ti, Si, and BaSrFBr:Eu

  • Lee, Chong Yong
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.85-87
    • /
    • 2016
  • Coincidence Doppler broadening and positron lifetime methods in positron annihilation spectroscopy has been used to analyze defect structures in metal, semiconductor and polycrystal, respectively. The S parameter and the lifetime (${\tau}$) value show that the defects were strongly related with vacancies. A positive relationship existed between the scanning electron microscope (SEM) images and the positron annihilation spectroscopy (PAS). According to the SEM images and PAS results, measurements of the defects with PAS indicate that it was more affected by the defect than the purity.

TDEAT single source를 사용한 TiN막의 특성평가

  • 김재호;이재갑;박상준;신현국;황찬용
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.28-33
    • /
    • 1995
  • TiN 박막은 저온(<$500^{\circ}C$), 저압(1Torr)에서 Tetrakis(diethylamido)titanium[TDEAT, Ti(NEt2)4]single precursor를 사용하여 증착하였다. 증차고딘 박막은 SEM(Scanning Electron Microscopy)으로 surface morphology와 step coverage를 측정하였고, TEM(Transmission Electron Microscopy)분석결과 microcrystalline의 TiN을 확인하였다. XPS(X-ray Photoelectron Spectroscopy)분석결과에 따르면 $200-500^{\circ}C$구간에서는 $\beta$-hydogen elimination에 의한 반응이 일어나고 $600-700^{\circ}C$구간에서는 thermal decomposition에 의한 반응이 일어나고 있음을 알 수 있다. Carbon과 oxygen의 농도는 AES(Auger Electron Spectroscopy)를 사용하여 측정하였으며 온도가 감소할수록 carbon의 농도가 감소하는 경향을 보여주고 있다.

  • PDF

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Study of Carbon Nanotubes Properties by Post-treatment Conditions (후처리 조건에 따른 탄소나노튜브 특성의 변화)

  • Choi Sung-Hun;Lee Jae-Hyeong;Yang Jong-Seok;Park Dae-Hee;Heo Jeong-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.930-934
    • /
    • 2006
  • This paper reports a change of carbon nanotubes(CNTs) properties by post-treatment process after growth of CNTs. CNTs were treated by thermal method and solution method, and then investigated in detail using field emission scanning electron microscopy(FE-SEM), high resolution transmission scanning electron microscopy(HR-TEM), RAMAN spectroscopy, and Fourier Transform Infrared Spectrometer (FT-IR). FT-IR spectra showed that the amount of hydroxyl generated on surface of CNTs were changed with post-treatment condition. FE-SEM and TEM images were shown CNTs diameter and density variations were dependent with their treatment conditions. RAMAN spectroscopy was shown that carbon nanotubes structure vary with treatment conditions.

Facile Hydrothermal Synthesis and Characterization of the $CeO_2$ Nanorings

  • Arul, N. Sabari;Kim, Tae Whan;Mangalaraj, Devanesan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.455-455
    • /
    • 2013
  • $CeO_2$ nanorings were synthesized by using a surfactant free hydrothermal method. The surface morphology, structural and optical properties of the synthesized $CeO_2$ was investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV) spectroscopy measurements. SEM images showed that the surface morphology of the formed $CeO_2$ appeared as nanorings. The XRD pattern of $CeO_2$ nanorings showed the presence of the polycrystalline $CeO_2$ phase readily indexed to the cubic fluorite structure of the $CeO_2$. The mean crystallite size of the $CeO_2$ was calculated using the Scherrer equation from the XRD line broadening of the (111) planes of the cubic $CeO_2$. The UV-Visible spectroscopy spectrum of the $CeO_2$ nanorings exhibited a strong UV absorption band around 350 nm.

  • PDF

Effect of Doping Si in DLC Thin Films Growth on Their Mechanical Properties

  • Kim, Dae-Yeong;Park, Min-Seok;Jin, In-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.369.2-369.2
    • /
    • 2014
  • Diamond-like Carbon(DLC) films doping Si were deposited by linear ion source(LIS)-physical vapor deposition method on Si wafer. We have studied the effects of Si content on friction and wear properties of DLC films and the characteristics of the films were investigated using Nano-indentation, Micro raman spectroscopy, Field Emission-Scanning Electron Microscope (FM-SEM) and X-ray Photoelectron Spectroscopy (XPS). The films has been various low-friction and low-stress by varying the flow rates of silane gas. Under the about 2% of Si doping is very suitable for improving the adhesion of films and reducing internal stress while maintaining the surfaces hardness of DLC films. Linear ion source (LIS)를 사용하여 Si wafer위에 Si 이온이 첨가된 DLC 박막을 증착하였다. 참가된Si 이온의 양에 따라 DLC 박막에 미치는 영향을 분석하기 위하여 마찰 계수 및 경도를 비교하였고, Micro raman spectroscopy, Field Emission-Scanning Electron Microscope (FM-SEM) and X-ray Photoelectron Spectroscopy (XPS)를 통하여 표면 상태를 분석하였다. 천체 주입된 가스량의 약 2%까지 Si 이온 주입이 늘어날수록 DLC 박막의 마찰계수는 낮아졌고, 경도는 Si 이온이 주입되지 않았을 경우와 비슷한 값(약 20~23 GPa)을 가졌다. 2% 이상의 주입량에서는 마찰계수는 주입량이 늘어날수록 높아졌으며 경도는 떨어지는 경향을 보였다. 이는 Si이온이 2%이하로 첨가되었을 경우, DLC 박막의 생성시 탄소 이온들의 결합 Stress를 줄여 마찰계수가 줄어든다고 볼 수 있으며, 그 양이 2%이상이 되면 오히려 불순물로 작용하여 DLC 박막의 Stress는 급격히 증가하고 마찰계수도 높아짐을 알 수 있다.

  • PDF