• 제목/요약/키워드: scaling error

검색결과 170건 처리시간 0.04초

구리와 코디에라이트와의 접촉점에서 구리에 대한 ESCA 스펙트럼의 에너지 교정 (Energy Calibration of ESCA Spectrum for the Copper in the Interface of Copper and Cordierite)

  • Han, Byoung-Sung
    • 대한전자공학회논문지
    • /
    • 제25권1호
    • /
    • pp.27-32
    • /
    • 1988
  • Electron Spectroscopy for Chemical Analysis(ESCA) allowes the determination of the elemental composition and the bonding state of the surface atomes in the interface between two materials. In the binding energies of ESCA spectrum, there are zero error, voltage scaling error and random error. Accurate analysis of the intensity energy response functions and accurate calibration of the energy scale are essential to use X-ray photoelectron spectron meter. At the results of the calibration of the ESCA spectra in the copper and cordierite (Mg2Al4Si5kO18) interfaces, the errors relative to the copper are -3.03 eV for the zero error -z,-197 ppm for the voltage scaling error -V and 6.9 meV for the random error -R. The method of the calibration is able to apply for the binding energy calibration of the another ESCA spectra.

  • PDF

Simplified 2-Dimensional Scaled Min-Sum Algorithm for LDPC Decoder

  • Cho, Keol;Lee, Wang-Heon;Chung, Ki-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1262-1270
    • /
    • 2017
  • Among various decoding algorithms of low-density parity-check (LDPC) codes, the min-sum (MS) algorithm and its modified algorithms are widely adopted because of their computational simplicity compared to the sum-product (SP) algorithm with slight loss of decoding performance. In the MS algorithm, the magnitude of the output message from a check node (CN) processing unit is decided by either the smallest or the next smallest input message which are denoted as min1 and min2, respectively. It has been shown that multiplying a scaling factor to the output of CN message will improve the decoding performance. Further, Zhong et al. have shown that multiplying different scaling factors (called a 2-dimensional scaling) to min1 and min2 much increases the performance of the LDPC decoder. In this paper, the simplified 2-dimensional scaled (S2DS) MS algorithm is proposed. In the proposed algorithm, we figure out a pair of the most efficient scaling factors which multiplications can be replaced with combinations of addition and shift operations. Furthermore, one scaling operation is approximated by the difference between min1 and min2. The simulation results show that S2DS achieves the error correcting performance which is close to or outperforms the SP algorithm regardless of coding rates, and its computational complexity is the lowest comparing to modified versions of MS algorithms.

Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing

  • Hwang, Jeong-hwan;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.204-209
    • /
    • 2019
  • In an optical interferometer that uses sinusoidal modulation and quadrature detection, the amplitude and offset of the interference signal vary with time, even without considering system noise. As a result, the circular Lissajous figure becomes elliptical, with wide lines. We propose and experimentally demonstrate a method for compensating quadrature detection error, based on digital signal processing to deal with scaling and fitting. In scaling, fluctuations in the amplitudes of in-phase and quadrature signals are compensated, and the scaled signals are fitted to a Lissajous unit circle. To do so, we scale the average fluctuation, remove the offset, and fit the ellipse to a unit circle. Our measurements of a target moving with uniform velocity show that we reduce quadrature detection error from 5 to 2 nanometers.

생동도 변환으로 인한 화상의 색오차 보정 (A Compensation of Color Eerror Caused by Dynamic Range Transformation of Images)

  • 장종국;권기룡;안상호;송규익;이건일
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.124-130
    • /
    • 1996
  • A compensation method of color error resulting from dynamic range transformation of color image is propsoed. The color error is measured using the CIE L a b uniform color space, and the color image is compensated to minimize it. The color error is significant in the dark region of image, which is caused by the lunimance scaling factor is relatively large in that case. In the proposed method, we weight the luminance scaling factor corresponding to luminnce to minimize the error. Because the weighting factor depends on luminace distribution of image, a decisio method of weighting factor using histogram is also proposed.

  • PDF

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

Diminution of Current Measurement Error in Vector Controlled AC Motor Drives

  • Jung Han-Su;Kim Jang-Mok;Kim Cheul-U;Choi Cheol;Jung Tae-Uk
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.151-159
    • /
    • 2005
  • The errors generated from current measurement paths are inevitable, and they can be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times the stator electrical frequency respectively. Since these undesirable ripples bring about harmful influences to motor driving systems, a compensation algorithm must be introduced to the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate for the current measurement errors. Usually the d-axis current command is zero or constant to acquire the maximum torque or unity power factor in the ac drive system, and the output of the d-axis current regulator is nearly zero or constant as well. If the stator currents include the offset and scaling errors, the respective motor speed produces a ripple related to one and two times the stator electrical frequency, and the signal of the integrator output of the d-axis current regulator also produces the ripple as the motor speed does. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness in the variation of the mechanical parameters, the application of the steady and transient state, the ease of implementation, and less computation time. The MATLAB simulation and experimental results are shown in order to verify the validity of the proposed current compensating algorithm.

최적화기법을 이용한 퍼지 제어기의 비선형 이득요소 동조 (Nonlinear Scaling Factors tuning of Fuzzy Controller using Optimization Techniques)

  • 류동완;권재철;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.705-707
    • /
    • 1997
  • An optimal tuning algorithm of scaling factors is presented in this paper to automatically improve the performance of fuzzy controller. Especially, fuzzy controller has determined an moderate Scaling factor through trial and error. The presented method estimates automatically the optimal values of I/O scaling factors, using modified steepest descent method and this optimal tuning is for nonlinear input/output scaling factors. Simulation results verify the validity of the presented method.

  • PDF

2상 유도전동기용 벡터제어 인버터를 위한 전류측정 오차 보상 방법 (Compensation Method of Current Measurement Error for Vector-Controlled Inverter of 2-Phase Induction Motor)

  • 이호준;윤덕용
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1204-1210
    • /
    • 2016
  • The phase currents must be accurately measured to achieve the instantaneous torque control of AC motors. In general, those are measured using the current sensors. However, the measured current signals can include the offset errors and scaling errors by several components such as current sensors, analog amplifiers, noise filter circuits, and analog-to-digital converters. Therefore, the torque-controlled performance can be deteriorated by the current measurement errors. In this paper we have analyzed the influence caused by vector control of 2-phase induction motor when two errors are included in measured phase currents. Based on analyzed results, the compensation method is proposed without additional hardware. The proposed compensation method was applied vector-controlled inverter for 2-phase induction motor of 360[W] class and verified through computer simulations and experiments.

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.

AC와 DC 노이즈가 있는 적분기 시스템에서 측정에러의 영향을 감소시키는 스위칭 상태 궤환 제어기의 설계 및 분석 (Design and Analysis of a Switching State Feedback Controller to Reduce the Measurement Error Effect for a Chain of Integrators System under AC and DC Noise)

  • 오상영;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, we propose a controller capable of reducing the effect of measurement errors under AC and DC noise. Typically, the control system measures data through a sensor. If sensor noise is included in a controller via the feedback channel, the signal is distorted and the entire system cannot work normally. Therefore, some appropriate action to counter the measurement error effect is essential in the controller design. Our controller is equipped with a gain-scaling factor and a compensator to reduce the effect of measurement error in the feedback signal. Also, we use a switching control strategy to enhance the performance of the controller regarding convergence speed. Our proposed controller can therefore effectively reduce the AC and DC noise of the sensor. We analyze the proposed controller by Laplace transform technique and our control method is verified via MATLAB simulation.