• Title/Summary/Keyword: scalefactor

Search Result 3, Processing Time 0.017 seconds

Audio Transcoding for Audio Streams from a T-DTV Broadcasting Station to a T-DMB Receiver

  • Bang, Kyoung-Ho;Park, Young-Cheol;Seo, Jeong-Il
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.664-667
    • /
    • 2006
  • We propose an efficient audio transcoding algorithm that can convert audio streams from terrestrial digital television broadcasting service stations to those for terrestrial digital multimedia broadcasting hand-held receivers. The proposed algorithm avoids the complicated psychoacoustic analysis by calculating the scalefactors of the bit-sliced arithmetic coding encoder directly from the signal-to-noise ratio parameters of the AC-3 decoder. The bit-allocation process is also simplified by cascading the nested distortion control loop. Through subjective evaluation, it is shown that the proposed algorithm provides comparable audio quality to tandem coding but it requires much smaller complexity.

  • PDF

MPEG-2 AAC Encoder Implementation Using a floating-Point DSP (부동 소수점 DSP를 이용한 MPEG-2 AAC 부호차기 구현)

  • Kim Seung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.882-888
    • /
    • 2005
  • MPEG-2 Advanced Audio Coding (AAC) has already been standardized as a sophisticated next generation technology AAC provides an audio signal that has CD quality at 96-128kbps/stereo. This paper describes a high-quality and efficient software implementation of an MPEG-2 AAC LC Profile encoder. Common scalefactor and noisless coding are accelerated by $45\%$ and $27\%$, respectively, through the use of TMS320C30 instructions. The implemented encoder uses 7.5kWords of program memory, 18kWords of data ROM and 92kBytes of data RAM, respectively. The results of subjective Qualify test showed that the sound quality achieved at 96kbps/stereo was equivalent to that of MP3 at 128kbps/stereo.

  • PDF

Quality Improvement of Low Bitrate HE-AAC using Linear Prediction Pre-processor (저 전송률 환경에서 선형예측 전처리기를 사용한 HE-AAC의 성능 향상)

  • Lee, Jae-Seong;Lee, Gun-Woo;Park, Young-Chul;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.822-829
    • /
    • 2009
  • This paper proposes a new method of improving the quality of High Efficiency Advanced Audio Coding (HE-AAC). HE-AAC encodes input source by allocating bits for each scalefactor bands appropriately according to human ear's psychoacoustic property. As a result, insufficient bits are assigned to the bands which have relatively low energy. This imbalance between different energy bands can cause decreasing of sound quality like musical noise. In the proposed system, a Linear Prediction (LP) module is combined with HE-AAC as a pre-processor to improve sound quality by even bits distribution. To apply accurate human being's psychoacoustic property, the psychoacoustic model uses Fast Fourier Transform (FFT) spectrum of original input signal to make masking threshold. In its implementation, masking threshold of psychoacoustic model is normalized using the LP spectral envelope in prior to quantization of the LP residual. Experimental result shows that, the proposed algorithm allocates bits appropriately for insufficient bits condition and improves the performance of HE-AAC.