• 제목/요약/키워드: scaled test

검색결과 700건 처리시간 0.024초

Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hangan, Horia
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.199-213
    • /
    • 2022
  • The current study investigates the dynamic effects in the tornado-structure response of an aeroelastic self-supported lattice transmission tower model tested under laboratory simulated tornado-like vortices. The aeroelastic model is designed for a geometric scale of 1:65 and tested under scaled down tornadoes in the Wind Engineering, Energy and Environment (WindEEE) Research Institute. The simulated tornadoes have a similar length scale of 1:65 compared to the full-scale. An extensive experimental parametric study is conducted by offsetting the stationary tornado center with respect to the aeroelastic model. Such aeroelastic testing of a transmission tower under laboratory tornadoes is not reported in the literature. A multiaxial load cell is mounted underneath the base plate to measure the base shear forces and overturning moments applied to the model in three perpendicular directions. A three-axis accelerometer is mounted at the level of the second cross-arm to measure response accelerations to evaluate the natural frequencies through a free-vibration test. Radial, tangential, and axial velocity components of the tornado wind field are measured using cobra probes. Sensitivity analyses are conducted to assess the variation of the structural dynamic response associated with the location of the tornado relative to the lattice transmission tower. Three different layouts representing the change in the orientation of the tower model relative to the components of the tornado-induced loads are considered. The structural responses of the aeroelastic model in terms of base shear forces, overturning moments, and lateral accelerations are measured. The results are utilized to understand the dynamic response of self-supported transmission towers to the tornado-induced loads.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

격납용기 피동냉각계통내 자연순환 공기유량 및 열전달 실험연구 (An Experiment of Natural Circulated Air Flow and Heat Transfer in the Passive Containment Cooling System)

  • 류석희;오승민;박군철
    • Nuclear Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.516-525
    • /
    • 1994
  • TMI 및 Chernobyl 사고이후 향후 원전에 대한 안전성 향상을 강화하기위해 개량형 원전에 대해 여러가지 피동형 안전설비가 제안되고 있다. 피동냉각계통의 타당성을 검증하고 상세 설계자료를 제공하기 위해, 본 연구는 웨스팅하우스사의 AP-600 피동격납용기와 같은 한쪽 가열면을 갖는 폐쇄유로에 대한 공기 유입구 위치 및 외부영향이 자연순환 공기유량에 미치는 영향과 자연 및 강제대류하에서 대류열전달계수를 조사하였다. 본 실험은 AP-600 격납용기를 1/26로 축소한 segment 유형의 실험장치를 토대로 수행되었다. 자연 및 강제대류 조건하의 공기유로내 특정 위치에서 공기의 속도 및 온도를 측정하였다. 실험결과는 일차원 단순 모델과 비교하였으며, 좋은 일치점을 보였다.

  • PDF

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Prediction Model of Real Estate Transaction Price with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.274-283
    • /
    • 2022
  • Korea is facing a number difficulties arising from rising housing prices. As 'housing' takes the lion's share in personal assets, many difficulties are expected to arise from fluctuating housing prices. The purpose of this study is creating housing price prediction model to prevent such risks and induce reasonable real estate purchases. This study made many attempts for understanding real estate instability and creating appropriate housing price prediction model. This study predicted and validated housing prices by using the LSTM technique - a type of Artificial Intelligence deep learning technology. LSTM is a network in which cell state and hidden state are recursively calculated in a structure which added cell state, which is conveyor belt role, to the existing RNN's hidden state. The real sale prices of apartments in autonomous districts ranging from January 2006 to December 2019 were collected through the Ministry of Land, Infrastructure, and Transport's real sale price open system and basic apartment and commercial district information were collected through the Public Data Portal and the Seoul Metropolitan City Data. The collected real sale price data were scaled based on monthly average sale price and a total of 168 data were organized by preprocessing respective data based on address. In order to predict prices, the LSTM implementation process was conducted by setting training period as 29 months (April 2015 to August 2017), validation period as 13 months (September 2017 to September 2018), and test period as 13 months (December 2018 to December 2019) according to time series data set. As a result of this study for predicting 'prices', there have been the following results. Firstly, this study obtained 76 percent of prediction similarity. We tried to design a prediction model of real estate transaction price with the LSTM Model based on AI and Bigdata. The final prediction model was created by collecting time series data, which identified the fact that 76 percent model can be made. This validated that predicting rate of return through the LSTM method can gain reliability.

풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구 (A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel)

  • 황의진;박재상;이명규
    • 항공우주시스템공학회지
    • /
    • 제17권2호
    • /
    • pp.45-55
    • /
    • 2023
  • 본 연구에서는 V-22 Osprey 틸트로터의 25% 축소 모델인 TRAM에 대하여 회전익기 통합 해석 코드인 CAMRAD II를 이용하여 프롭로터의 Aeromechanics 모델링과 블레이드 및 피치 링크에 대한 구조 하중 해석을 수행한 후, DNW 풍동 시험 및 선행 해석 연구 결과와 상호 비교하였다. 본 연구에서는 저속 전진 비행 시 블레이드 플랩 굽힘 모멘트의 구조 하중 및 진동 하중 변화를 풍동 시험 결과에 대하여 비교적 잘 예측하였다. 리드-래그 굽힘 및 비틀림 모멘트의 구조 하중 및 진동 하중 해석은 풍동 시험과 다소 다르게 얻어졌으나, 평균값을 제거하였을 때 로터 회전 한 바퀴당 구조 하중 해석 결과가 풍동 시험 및 선행 해석 연구와 비교적 유사하였다. 피치 링크의 구조 하중 및 진동 하중 해석은 전반적으로 선행 연구의 시험 및 해석 결과와 유사하게 얻어졌다. 마지막으로 블레이드 구조 진동 하중의 조화 성분 해석 및 비교를 통하여 블레이드 리드-래그 굽힘 및 비틀림 모멘트의 오차 발생 원인을 분석하였다.

일체식 교대 교량의 파일-교대 연결부 거동에 관한 실험적 연구 (Experimental Study on Behaviors of Pile-Abutment Joint in Integral Abutment Bridge)

  • 김상효;윤지현;안진희;이상우
    • 대한토목학회논문집
    • /
    • 제29권6A호
    • /
    • pp.651-659
    • /
    • 2009
  • 본 연구는 일체식 교대 교량의 파일-교대 연결부의 거동에 관한 것이다. 본 연구에서는 일체식 교대 교량 연결부의 강체거동을 위하여 교대에 매입된 파일(H형강)에 관통철근을 배치한 형태, 스터드 전단연결재를 설치한 형태의 두 가지의 파일-교대 연결부를 제안하였다. 제안된 파일-교대 연결부의 거동 평가를 위하여 제안된 연결부가 설치된 파일-교대 축소모형 시험체와 일체식 교량 설계지침에서 제시한 연결부가 설치된 파일-교대 축소모형 시험체를 제작하여 하중재하시험을 수행하였다. 하중재하시험 결과, 모든 시험체에서 탄성영역 내의 초기강성은 일반적인 일체식 교대 교량에 적용이 가능할 정도로 나타났다. 그러나 항복 이후 강성과 하중저항 성능, 균열진전양상, 회전 강성 및 지압강도 측면에서 비교한 결과, 본 연구에서 제안한 파일-교대 연결부 방식이 일체식 교대교량의 파일 연결부의 강체거동에 더욱 효과적인 것으로 평가되었다.

학교 건축물의 면내보강을 위한 강재브레이스 접합용 내진어댑터의 상세 제안 및 성능검증 (Proposal and Performance Verification of a Seismic Adapter for Steel Brace Connections for In-plane Reinforcement of School Buildings)

  • 허석재;정란;백인관
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.162-171
    • /
    • 2023
  • 본 연구에서는 기존 구조물의 면내 보강을 위해 콘크리트 구조물과 보강재를 쉽게 연결할 수 있는 내진 어댑터의 세부 설계 방안을 제안하였다. 제안된 내진 어댑터는 실제 크기의 절반으로 축소된 2층짜리 기둥-보 구조물에서 동적 시뮬레이션을 통해 성능을 테스트하였다. 실험 결과, 내진 어댑터를 사용하여 보강된 시험체는 보강되지 않은 시험체에 비해 에너지 소산 능력이 3.5배 향상되었음을 보여주어, 일반적인 사용 범위 내에서 내진 어댑터가 손상되지 않았음이 확인되어 그 효과를 입증하였다. 이어서 변형 한계(변형 각도 3.3%)까지 하중을 가했을 때, 1층 하부에서 어댑터와 보강재를 연결하는 M10 볼트 중 하나가 파손된 것을 관찰하였다. 이러한 발견을 고려할 때, 실제 상황에서 내진 보강을 적용할 때는 내진 어댑터를 연결하는 볼트와 앵커의 설계에 중점을 둬야 할 것으로 판단되었다.

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

과소/과잉노동과 근로환경 (Under and Over Employment and Working Conditions)

  • 이경용;송세욱;김영선
    • 한국산업보건학회지
    • /
    • 제24권4호
    • /
    • pp.536-546
    • /
    • 2014
  • Objectives: The major objective of this paper is compare the exposure work hours and experieence of ill health symptoms among under and over employment and matched group. Workers with over employment have more exposed to hazards than that with under employment because that workers with over employment work more than those with ender employment. Methods: This study as heuristics one used the third Korean Working Conditions Survey done by Occupational Safety and Health Research Institute in 2011. The sample size is 50,023 economic active persons. Over and under employment were measured by matching method of preferred and actual work hours. The exposed work hours to hazards were measured according to 13 hazardous factors and the experience of ill health symptoms were scaled by the number of experienced 14 ill health symptoms. To compare the exposure and the symptoms experience were compared by mean difference test with F test. Results: The proportion of over employment in male employees is 32.1% and that in female employees is 29.3% and under employment rate is 11.2% in mae and 13.9% in female employees. There is significant difference of the rate of over and under emplyment among age groups, industrial sectors, occupational groups and the state of employment. The difference of the exposed work hours to hazards among under, over and matched group were statistically significant in all hazards by gender. The exposed work hours to hazards in over employment were more than those in under employment. The number of experienced symptoms in over employment is statistically significantly more than that in under employment. Conclusions: Workers with over employment may be vulnerable group in the criteria of hazard exposure and health status. The results have some implications and limitations because that this study is heuristic one. The mismatch of preferred and actual working hours may be unfavorable work condition that has impact on safety and health of workers. The impact mechanism may be investigated as future study, Because that this study used cross sectional survey data, some causal relationships cannot be evaluated.