• Title/Summary/Keyword: scaled Euclidean distance

Search Result 1, Processing Time 0.012 seconds

Visualizing multidimensional data in multiple groups (다그룹 다차원 데이터의 시각화)

  • Huh, Myung-Hoe
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.83-93
    • /
    • 2017
  • A typical approach to visualizing k (${\geq}2$)-group multidimensional data is to use Fisher's canonical discriminant analysis (CDA). CDA finds the best low-dimensional subspace that accommodates k group centroids in the Mahalanobis space. This paper proposes an alternative visualization procedure functioning in the Euclidean space, which finds the primary dimension with maximum discrimination of k group centroids and the secondary dimension with maximum dispersion of all observational units. This hybrid procedure is especially useful when the number of groups k is two.