• Title/Summary/Keyword: scale-up fermentation

Search Result 52, Processing Time 0.02 seconds

Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40

  • Ha, Sanghyun;Lee, Keon Jin;Lee, Sang Il;Gwak, Hyun Jung;Lee, Jong-Hee;Kim, Tae-Woon;Choi, Hak-Jong;Jang, Ja-Young;Choi, Jung-Sub;Kim, Chang-Jin;Kim, Jin-Cheol;Kim, Hyeong Hwan;Park, Hae Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.947-955
    • /
    • 2017
  • Herbicidin A is a potent herbicide against dicotyledonous plants as well as an antibiotic against phytopathogens. In this study, fermentation parameters for herbicidin A production in submerged culture of Streptomyces scopuliridis M40 were investigated. The herbicidin A concentration varied with the C/N ratio. High C/N ratios (>4) resulted in a herbicidin A production of more than 900 mg/l, whereas maximally 600 mg/l was obtained at ratios between 1 and 3.5. In 5-L batch fermentation, there was a positive correlation between the oxygen uptake rate (OUR) and herbicidin A production. Once the OUR increased, the substrate consumption rate increased, leading to an increase in volumetric productivity. Mechanical shear force affected the hyphal morphology and OUR. When the medium value of hyphal size ranged from 150 to $180{\mu}m$, high volumetric production of herbicidin A was obtained with OUR values >137mg $O_2/l{\cdot}h$. The highest herbicidin A concentration of 956.6 mg/l was obtained at 500 rpm, and coincided with the highest relative abundance of hyphae of $100-200{\mu}m$ length and the highest OUR during cultivation. Based on a constant impeller tip speed, which affects hyphal morphology, herbicidin A production was successfully scaled up from a 5-L jar to a 500-L pilot vessel.

Microbial transformation of the sweet sesquiterpene (+)-hernandulcin

  • Yang, Hyun-Ju;Kim, Hyun-Jung;Whang, Yun-Ae;Choi, Jung-Kap;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.5 no.3
    • /
    • pp.151-153
    • /
    • 1999
  • (+)-Hernandulcin is a sweet bisabolane-type sesquiterpene first isolated from Lippia dulcis Trev. (Verbenaceae). This oily compound is 1000-1500 times sweeter than sucrose but with poor solubility in water. Microbial transformation was employed to improve its water solubility, and a variety of microorganisms were screened for their ability to convert (+)-hernandulcin to more polar metabolites. Scale-up fermentation with Glomerella cinguiata, a fungal strain, has resulted in the isolation of a more polar metabolite (2).

  • PDF

Microbial Transformation of Two Prenylated Naringenins

  • Han, Fubo;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.306-309
    • /
    • 2017
  • Microbial transformation of $({\pm})$-6-(1,1-dimethylallyl)naringenin (6-DMAN, 1) and $({\pm})$-5-(O-prenyl) naringenin-4',7-diacetate (5-O-PN, 2) was performed by using fungi. Scale-up fermentation studies with Mucor hiemalis, Cunninghamella elegans var. elegans, and Penicillium chrysogenum led to the isolation of five microbial metabolites. Chemical structures of the metabolites were determined by spectral analyses as $({\pm})$-8-prenylnaringenin (3), (2S)-5,4'-dihydroxy-7,8-[(R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanone (4), $({\pm})$-5-(O-prenyl)naringenin-4'-acetate (5), $({\pm})$-naringenin-4'-acetate (6), and $({\pm})$-naringenin (7), of which 5 was identified as a new compound.

Bioconversion of onion extract to improve the bioavailability of quercetin glycoconjugate (쿼세틴 복합체의 생물학적 이용성 향상을 위한 양파 추출물의 유산균 발효)

  • Yun, Yeo Jin;Lee, Ahyun;Nguyen, Thi My Tuyen;Park, Jong Tae;Yun, Sang Man;Kim, Jaehan
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.391-399
    • /
    • 2018
  • Bioconversion and fermentation of onion extract by lactic acid bacteria were carried out to enhance the bioavailability of quercetin through the increase of quercetin recovery and aglycone formation. Lactobacillus casei, L. plantarum, and Kluyveromyces lactis were selected as the optimum strains for bioconversion. The environmental conditions to maximize the conversion ratio between glycoconjugate and quercetin aglycone have been evaluated. The concentrations of quercetin after fermentation of onion slurry by K. lactis and L. casei increased to 260% and 318%, respectively; however, the quercetin concentrations decreased after 48 hours of fermentation. Additionally, the quercetin hexose concentration increased to almost 141%. Controlling the initial pH of the onion juice increased the lactic acid production by L. casei and L. plantarum by more than two-fold. Meanwhile, the concentration of quercetin hexose decreased rapidly with the increased production of aglycones. The scale-up experiments showed the same fermentation efficiency; however, thermal sterilization reduced the quercetin glycone concentrations drastically.

Development of a Novel Medium with Chinese Cabbage Extract and Optimized Fermentation Conditions for the Cultivation of Leuconostoc citreum GR1 (폐배추 추출물을 이용한 Leuconostoc citreum GR1 종균 배양용 최적 배지 및 배양 조건 개발)

  • Moon, Shin-Hye;Chang, Hae-Choon;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1125-1132
    • /
    • 2013
  • In the kimchi manufacturing process, the starter is cultured on a large-scale and needs to be supplied at a low price to kimchi factories. However, current high costs associated with the culture of lactic acid bacteria for the starter, have led to rising kimchi prices. To solve this problem, the development of a new medium for culturing lactic acid bacteria was studied. The base materials of a this novel medium consisted of Chinese cabbage extract, a carbon source, a nitrogen source, and inorganic salts. The optimal composition of this medium was determined to be 30% Chinese cabbage extract, 2% maltose, 0.25% yeast extract, and $2{\times}$ salt stock (2% sodium acetate trihydrate, 0.8% disodium hydrogen phosphate, 0.8% sodium citrate, 0.8% ammonium sulfate, 0.04% magnesium sulfate, 0.02% manganese sulfate). The newly developed medium was named MFL (medium for lactic acid bacteria). After culture for 24 hr at $30^{\circ}C$, the CFU/mL of Leuconostoc (Leuc.) citreum GR1 in MRS and MFL was $3.41{\times}10^9$ and $7.49{\times}10^9$, respectively. The number of cells in the MFL medium was 2.2 times higher than their number in the MRS media. In a scale-up process using this optimized medium, the fermentation conditions for Leuc. citreum GR1 were tested in a 2 L working volume using a 5 L jar fermentor at $30^{\circ}C$. At an impeller speed of 50 rpm (without pH control), the viable cell count was $8.60{\times}10^9$ CFU/mL. From studies on pH-stat control fermentation, the optimal pH and regulating agent was determined to be 6.8 and NaOH, respectively. At an impeller speed of 50 rpm with pH control, the viable cell count was $11.42{\times}10^9(1.14{\times}10^{10})$ CFU/mL after cultivation for 20 hr - a value was 3.34 times higher than that obtained using the MRS media in biomass production. This MFL media is expected to have economic advantages for the cultivation of Leuc. citreum GR1 as a starter for kimchi production.

Quality Characteristics of Seoktanju Fermented by using Different Commercial Nuruks (시판누룩 사용 별 석탄주의 품질특성)

  • Choi, Ji-Ho;Jeon, Jin-A;Jung, Seok-Tae;Park, Ji-Hye;Park, Shin-Young;Lee, Choong-Hwan;Kim, Tack-Joong;Choi, Han-Seok;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • We investigated quality characteristics of Seoktanju (one of the Korean traditional rice wine) which was fermented using five kinds of Korean commercial Nuruks. The purpose of this study was to research what effects on the quality of Seoktanju by using different Nuruks. We analyzed general component such as each mash's temperature change patterns, pH, titrable acidities, reducing sugar contents, volatile acids, and sugar contents during fermentation periods and studied sensory evaluation of produced Seoktanju (10 days). On the whole, temperature change patterns in the each mashes were depend on room temperature. All Seoktanju's pH was reduced rapidly up to three days after first mashing (pH 3.13-3.57) and after that was increased gradually. The end of fermentation pH was pH 3.6-4.05. Mostly, acidities were indicated high(0.59%) and Nuruk-B was showed highest acid value. These results seems to be different as occasion organic acids producing activity depend on the number of yeast, material contents, optimal temperature in the each mashes by fungi and lactic acid bacteria in Nuruks. In reducing sugar contents and sugar contents, Nuruk-C treatment were showed the highest value with 5.36%, $23^{\circ}brix$, respectively and alcohol content was lowest with 8.6%. In the five kinds of reproduced Seoktanju, alcohol content was the highest in the treated Nuruk-A group. Volatile acid value was the highest with 132.6~263.7 ppm at the 3 day after first mashing day but as the fermentation time goes on, it was reduced sharply by 5.25~5.94 ppm. Sensory evaluation was performed with 5 point scale, the Seoktanju using Nuruk-D was presented by 4 point, while Nuruk-A was presented lowest by 2.77 point on overall acceptability.

A Kinetic Study for Exopolysaccharide Production in Submerged Mycelial Culture of an Entomopathogenic Fungus Paecilomyces tenuipes C240 (동충하초 Paecilomyces tenuipes C240의 균사체 배양에 의한 세포외 다당체 생산의 동력학적 연구)

  • Xu Chung Ping;Yun Jong Won
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.15-20
    • /
    • 2005
  • The unstructured model was tested to describe mycelial growth, exopolysaccharide formation, and substrate consumption in submerged mycelial culture of Paeeiliomyees tenuipes C240. The Logistic equation for mycelial growth, the Luedeking-Piret equation for exopolysaccharide formation, and Luedeking­Piret-like equations for glucose consumptions were successfully incorporated into the model. The value of the key kinetic constants were: maximum specific growth rate ${\mu}m,\;0.7281\;h^{-1};$ growth­associated constant for exopolysaccharide production $(\alpha),\;0.1743g(g\;cells)^{-1}$; non-growth associated constant for exopolysaccharide production $(\beta),\;0.0019g(g\;cells)^{-1}\;;$ maintenance coefficient $(m_s),\;0.0572g\;(g\;cells)^{-1}$. When compared with batch experimental data, the model successfully provided a reasonable description for each parameter during the entire growth phase. The model showed that the production of exopolysaccharide in P. tenuipes C240 was growth-associated. The model tested in the present study can be applied to the design, scale-up, and control of fermentation process for other kinds of basidiomycetes or ascomycetes.

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

Large-Scale Refolding and Enzyme Reaction of Human Preproinsulin for Production of Human Insulin

  • Kim, Chang-Kyu;Lee, Seung-Bae;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1742-1750
    • /
    • 2015
  • Human insulin is composed of 21 amino acids of an A-chain and 30 amino acids of a B-chain. This is the protein hormone that has the role of blood sugar control. When the recombinant human proinsulin is expressed in Escherichia coli, a serious problem is the formation of an inclusion body. Therefore, the inclusion body must be denatured and refolded under chaotropic agents and suitable reductants. In this study, H27R-proinsulin was refolded from the denatured form with β-mercaptoethanol and urea. The refolding reaction was completed after 15 h at $15^{\circ}C$, whereas the reaction at $25^{\circ}C$ was faster than that at $15^{\circ}C$. The refolding yield at $15^{\circ}C$ was 17% higher than that at $25^{\circ}C$. The refolding reaction could be carried out at a high protein concentration (2 g/l) using direct refolding without sulfonation. The most economical and optimal refolding condition for human preproinsulin was 1.5 g/l protein, 10 mM glycine buffer containing 0.6 M urea, pH 10.6, and 0.3 mM β-mercaptoethanol at $15^{\circ}C$ for 16 h. The maximum refolding yield was 74.8% at $15^{\circ}C$ with 1.5 g/l protein. Moreover, the refolded preproinsulin could be converted into normal mature insulin with two enzymes. The average amount of human insulin was 138.2 g from 200 L of fermentation broth after enzyme reaction with H27R-proinsulin. The direct refolding process for H27R-proinsulin was successfully set up without sulfonation. The step yields for refolding and enzyme reaction were comparatively high. Therefore, our refolding process for production of recombinant insulin may be beneficial to the large-scale production of other biologically active proteins.

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.