• Title/Summary/Keyword: scale-model

Search Result 8,440, Processing Time 0.04 seconds

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Landscape Urbanism in Special West Chelsea District Rezoning and High Line Open Space Redevelopment Project (웨스트 첼시 개발과 하이라인의 역할에서 나타난 랜드스케이프 어바니즘의 성격)

  • Yoon, Hee-Yeun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.84-97
    • /
    • 2010
  • Landscape urbanism emerges as an alternative to the urban design theories of the past century, emphasizing landscape as an organizing principle, integrating the medium of different elements of the urban environment. However, ongoing criticism of the theory's lack of consideration for physical urban morphology has not supported the integrity of the theory. Large parks, which many proponents of the theory have referred to, possess valuable and interesting points in their design and management. This also shows the limitation of not being able to show the close physical relationship between open space and the city. In this study, the High Line project was analyzed to verify it as founded on landscape urbanism, providing that landscape urbanism drives the urban morphology on a small scale rather than a large one. This paper concludes that landscape urbanism should include small parks as one kind of study model with the small grained interaction between open spaces and the cities under this category to broaden and deepen the perspective. Also, the effort to analyze quantified and physical consequences of the theory through close observation should be followed to extract the design strategies to be applied to future projects.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Study on Structural Strength of Mark III type LNG Cargo Containment System by Idealized Triangular Impulse Load (MarkIII LNG 방열 시스템의 강도평가를 위한 삼각형 충격 하중에 대한 구조응답에 대한 연구)

  • Hwang, Se Yun;Kim, Sung Chan;Lee, Jang Hyun;Nho, In Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.615-624
    • /
    • 2014
  • It has been well known the sloshing pressure has complex shape and various patterns. The pattern of sloshing pressure is variously characterized by the pressure amplitude, duration time and skewness. The structural response induced by the sloshing pressure is also affected by the pattern of sloshing pressure and the type of structural members. In order to understand the structural response by the perspective view of categorized pattern, it is more efficient to make simple sloshing pressure pattern than to reflect the complex pressure history. In this study, the sloshing pressures obtained by the small scale model test are simplified with respect to their duration and skewness. Dynamic analyses of Mark-III LNG CCS are then parametrically performed with the consideration of various types of sloshing impact. Meanwhile, the failure pressures given the duration and skewness are investigated after parametric calculations are conducted to investigate the effect of pressure parameters on the structural response.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.

The Study of Customer Satisfaction with the Port Authority System -Focus on Container Terminal in Busan Port- (항만공사체제하의 고객만족 연구 - 부산항 컨테이너 터미널을 중심으로-)

  • Kim, Dong-Yol;Yang, Chang-Ho;Kim, Yoon-Joung
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.4
    • /
    • pp.225-250
    • /
    • 2009
  • The purpose of this paper is to clarify the movement of customer satisfaction factor of port like marketing and customer support factors and set up new strategy for customer satisfaction with the factors of control by Port Authority. It was researched to Terminal operation and shipping companies of main clients of Container Terminals of Busan Port. The Score of customer satisfaction is 4.62, it is almost average score to consider Likert Scale 7 for Research measurement. For Customer satisfaction measurement score, the factor is named Port Facility, Port Cost, Marketing Activity and Customer Support with 20 elements. It is verified suitable model by Structural Equation Method. It is effect customer satisfaction by Marketing Activity and Customer Support factor instead of Port Facility and Port Cost. So Port Authority has to plan new strategy for customer satisfaction to consider its effect factors.

  • PDF

A Research on the PMO Functions and PMO Management Level to Increase the IS Project Performance (정보시스템 프로젝트 성과 향상을 위한 PMO 기능과 관리수준에 관한 연구)

  • Lee, Jae-Beom;Jang, Yun-Hi;Kim, Sang-Yeol
    • Journal of Digital Convergence
    • /
    • v.9 no.2
    • /
    • pp.111-129
    • /
    • 2011
  • Nowadays, the IS project is getting more and more complicated and large-scaled. Many researchers and practitioners are interested in the IS development methodologies, automated tools and techniques to decrease project failure and to increase IS project performance. This research is to seize the management level of PMO affecting on the IS project, as a new method to increase the IS project development performance. As a result of surveying the present PMO operation state with banks which are the leading industry to accept the PMO in Korea, technology support management and infrastructure management are the core functions to affect the IS performance including schedule management, quality management, and user and stakeholders' satisfaction. Also, the PMO management level is the important point of IS project success. Among the 5 levels PMI suggested, PMO can implement the project effectively at least at the third level. Korean companies introducing the PMO have to do research the PMO core functions and the management levels according to the project scale, and review the distinctive features of their organization to increase the maturity of IS project. This research has been proved through the Full Structural Equation Model. The results show that the five core functions of PMO have relationship with the IS project performance.

The Accelerated Life Test of 2.5 Inch Hard Disk In The Environment of PC using (PC 사용 환경의 2.5 인치 하드디스크의 가속 수명 시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Seo, Hui-Don
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • In order to estimate the life of 2,5 inch HDD which is adopted by PC environment, make the test plan which reflect the failure mode of market, make the test model of accelerated life test which reflect the stress of temperature. after an analysis of the environment of PC using, test procedure was decided that operation was write 50 % and read 50 %, and then access method was sequential 50 % and random 50%. The acceleration life test was executed on condition that temperature was $50^{\circ}C$ and $60^{\circ}C$, performance was 95 % in max performance, test time was 1000 hours. by the test of goodness of fit of anderson-darling of the failure data during test, it was confirmed that the distribution of failure fellow weibull. test for shape and scale was equal, and shape parameter was 0.7177, characteristic life was 429434 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling. It made no difference about the statistics when equality test was executed. The activation energy was 0.2775eV. In analyzing between the failure samples of acceleration test and the samples of market return even though there is detail difference about the share of failure mode, the rank of share was almost same. This study suggest the test procedure of acceleration test of 2.5 inch HDD in PC using environment, and help the life estimation at manufacture and user.

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.