• Title/Summary/Keyword: scale-model

Search Result 8,446, Processing Time 0.041 seconds

Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)

  • Kim, Yusik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Vacuum-assisted air gap membrane distillation (V-AGMD) has the potential to achieve higher flux and productivity than conventional air gap membrane distillation (AGMD). Nevertheless, there is not much information on technical aspects of V-AGMD operation. Accordingly, this study aims to analyze the effect of membrane deformation on flux in V-AGMD operation. Experiments were carried out using a bench-scale V-AGMD system. Statistical models were applied to understand the flux behaviors. Statistical models based on MLR, GNN, and MLFNN techniques were developed to describe the experimental data. Results showed that the flux increased by up to 4 times with the application of vacuum in V-AGMD compared with conventional AGMD. The flux in both AGMD and V-AGMD is affected by the difference between the air gap pressure and the saturation pressure of water vapor, but their dependences were different. In V-AGMD, the membranes were found to be deformed due to the vacuum pressure because they were not fully supported by the spacer. As a result, the deformation reduced the effective air gap width. Nevertheless, the rejection and LEP were not changed even if the deformation occurred. The flux behaviors in V-AGMD were successfully interpreted by the GNN and MLFNN models. According to the model calculations, the relative impact of the membrane deformation ranges from 10.3% to 16.1%.

Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm

  • Chen, ZY;Meng, Yahui;Wang, Ruei-Yuan;Peng, Sheng-Hsiang;Yang, Yaoke;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.591-598
    • /
    • 2022
  • The article deals with the possibilities of vibration stimulation. Based on the stability analysis, a multi-scale approach with a modified whole-building model is implemented. The motion equation is configured for a controlled bridge with a MDOF (multiple dynamic degrees of freedom) Tuned Mass Damper (M-TMD) system, and a combination of welding, excitation, and control effects is used with its advanced packages and commercial software submodel. Because the design of high-performance and efficient structural systems has been of interest to practical engineers, systematic methods of structural and functional synthesis of control systems must be used in many applications. The smart method can be stabilized by properly controlling the high frequency injection limits. The simulation results illustrate that the multiple modeling method used is consistent with the accuracy and high computational efficiency. The M-TMD system, even with moderate reductions in critical pressure, can significantly suppress overall feedback on an unregulated design.

Investment strategy using AESG rating: Focusing on a Korean Market

  • KIM, Eunchong;JEONG, Hanwook
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Purpose: This study used ESG grade, but defined AESG, adjusted to the size of a company and examines whether it can be used as an investment strategy. Research design, data and methodology: The analysis sample in this study is a company that has given an ESG rating among companies listed on the Korea Stock Exchange. We examine the results through portfolio analysis and Fama-macbeth regression analysis. Results: As result of examining the long-only performance and the long-short performance by constructing quintile portfolios, it was observed that a significant positive return was shown. It was observed that there was an alpha that could not be explained in asset pricing models. Also, AESG had a return prediction effect in the result of a Fama-Macbeth regression that controlled corporate characteristic variables in individual stocks. Next, we confirmed AESG's usage through various portfolio composition. In the portfolio optimization, the Risk Efficient method was the most superior in terms of sharpe ratio and the construct multi-factor model with Value, Momentum and Low Vol showed statistically significant performance improvement. Conclusions: The results of this study suggest that it can be helpful in ESG investment to reflect the ESG rating of relatively small companies more through the scale adjustment of the ESG rating (i.e.AESG).

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

The Effect of Sports Club Membership Lifestyle on Choice Behavior

  • Sunmun Park;Shuo LI
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.267-275
    • /
    • 2023
  • The purpose of this study is to investigate the influence of sports center members' lifestyles on participation promotion and choice behavior. To this end, more specifically, we intend to establish and clarify a hypothetical model based on the preceding studies of facilitating factors and factors that continue to participate according to the lifestyle of sports center members. In order to achieve this research purpose, the study subjects were set as the population of male and female adults over 20 who are using sports centers in Gwangju Metropolitan City and Jeollanam-do in 2021. As for the sampling method, the sample was extracted using cluster random sampling, and 300 people were used for the actual analysis, excluding 60 copies of double-entry and insincere or unreliable questionnaires. The survey tool was modified and supplemented according to this study based on the questionnaire that had been verified for reliability and validity in previous studies, and all questionnaire items were composed of a 5-point scale. The statistical analysis used for data analysis was frequency analysis, exploratory factor analysis, reliability analysis, and multiple regression analysis using SPSS Windows 21.0 Version. The conclusions obtained in this study through data analysis by such methods and procedures are as follows. First, according to the lifestyle of sports center members, participation promotion factors were found to have a partial influence. Second, according to the lifestyle of sports center members, the selection behavior was found to have a partial influence. Third, it was found that the participation promotion factors of sports center members partially affected the choice behavior.

Study for Safety of Oriental Medical Therapy and Continuous Intravenous Urokinase combined Therapy in Acute Cerebral Infarction. (급성기 뇌경색 환자에서 한방치료와 지속적 유로키나제 정주요법 병용시 안전성에 대한 임상적 고찰)

  • Kim, Sung-keun;Lim, Chang-sun;Yim, Jun-hyok;Yang, Dong-ho;Shin, Hyon-seung;Park, Joon-ha;Jeong, Seung-cheol
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Objectives : This Study was prepared for investigating the safety of oriental medicine and continuous intravenous urokinase combined therapy in acute cerebral infarction. Methods : We prospectively estimate safety of hemorrhagic transformation occurred in oriental medical therapy and continuous intravenous urokinase combined therapy. We estimate National Institute of Health Stroke Scale Score and Modified Barthel Index. Results : Hemorrhagic transformation was not noted. and Others are not fatal complication. Conclusions : oriental medical therapy and continuous intravenous urokinase combined therapy are safety method in treatment of acute cerebral infarction. We think this can be a good model of Oriental and western cooperative therapy.

  • PDF

A Kafka-based Data Sharing Method for Educational Video Services (교육 동영상 공유 서비스의 카프카 기반 데이터 공유 방안)

  • Lee, Hyeon sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.574-576
    • /
    • 2021
  • It is necessary to introduce micro-service techniques when constructing large-scale operating systems or systems that take into account scalability. Kafka is a message queue with the pub/sub model, which has features that are well applied to distributed environments and is also suitable for microservices in that it can utilize various data sources. In this paper, we propose a data sharing method for educational video sharing services using Apache's Kafka. The proposed system builds a Kafka cluster for the educational video sharing service to share various data, and also uses a spark cluster to link with recommendation systems based on similarities in educational videos. We also present a way to share various data sources, such as files, various DBMS, etc.

  • PDF

Repair of tendon injury in Taekwondo by nanobiotics

  • Dilong An;Shun Jiang;Tongtong Cai;Wei Tian
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.591-602
    • /
    • 2023
  • In the present study, capability of nanobiotics in repairing tendon injuries commonly occur in Taekwondo sport is investigated and some approaches are proposed. In this regard, a brief review on the types and application of nanobiotics is presented. Their capabilities and limitation are discussed. Next, different type of tendon injuries in Taekwondo athletes are discussed along with their treatment approaches. Based on the presented data, a nano-scale feasible robot model carrying nanobiotics is proposed for repairing tendons. Finite element simulations is also conducted to show the effectiveness of the repairing process using nanorobots equipped with nanobiotics. This repairing procedure is a combination of mechanical and chemical treatments. The results indicated that using nanobiotics on nanorobots arms in the repair of tendon injuries has many benefits. First, drug delivery is directly injected to the target section. Second, Due to the nanorobots small sizes more acute treatment is possible. Finally, since the control of the nanorobots are assisted with computers, the possibility of human error reduces significantly. The proposed method of the present study could be utilized by other scientists and technological industry in developing final nanorobots with nanobiotics carrying capacity.

Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load

  • Ismail Esen;Mashhour A. Alazwari;Khalid H. Almitani;Mohamed A Eltaher;A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.475-493
    • /
    • 2023
  • In the context of nonclassical nonlocal strain gradient elasticity, this article studies the free and forced responses of functionally graded material (FGM) porous nanoplates exposed to thermal and magnetic fields under a moving load. The developed mathematical model includes shear deformation, size-scale, miscorstructure influences in the framework of higher order shear deformation theory (HSDT) and nonlocal strain gradient theory (NSGT), respectively. To explore the porosity effect, the study considers four different porosity models across the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The system of quations of motion of the FGM porous nanoplate, including the effects of thermal load, Lorentz force, due to the magnetic field and moving load, are derived using the Hamilton's principle, and then solved analytically by employing the Navier method. For the free and forced responses of the nanoplate, the effects of nonlocal elasticity, strain gradient elasticity, temperature rise, magnetic field intensity, porosity volume fraction, and porosity distribution are analyzed. It is found that the forced vibrations of FGM porous nanoplates under thermal and live loads can be damped by applying a directed magnetic field.