• Title/Summary/Keyword: scale-invariant feature

Search Result 235, Processing Time 0.02 seconds

A Unit Selection Methods using Flexible Break in a Japanese TTS (일본어 합성기에서 유동 Break를 이용한 합성단위 선택 방법)

  • Song, Young-Hwan;Na, Deok-Su;Kim, Jong-Kuk;Bae, Myung-Jin;Lee, Jong-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.403-408
    • /
    • 2007
  • In a large corpus-based speech synthesizer, a break, which is a parameter influencing the naturalness and intelligibility, is used as an important feature during a unit selection process. Japanese is a language having intonations, which ate indicated by the relative differences in pitch heights and the APs(Accentual Phrases) are placed according to the changes of the accents while a break occurs on a boundary of the APs. Although a break can be predicted by using J-ToBI(Japanese-Tones and Break Indices), which is a rule-based or statistical approach, it is very difficult to predict a break exactly due to the flexibility. Therefore, in this paper, a method is to conduct a unit search by dividing breaks into two types, such as a fixed break and a flexible break, in order to use the advantages of a large-scale corpus, which includes various types of prosodies. As a result of an experiment, the proposed unit selection method contributed itself to enhance the naturalness of synthesized speeches.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.