• 제목/요약/키워드: scale removal

검색결과 1,231건 처리시간 0.034초

자연정화공법에 의한 소형 하수처리장치 개발을 위한 최적 깊이 및 호기.혐기 비율 (Optimum Depth and Volume Ratio of Aerobic to Anaerobic Bed for Development of Small-Scale Sewage Treatment Apparatus by Natural Purification Method)

  • 서동철;박미령;곽내운;황하나;이홍재;조주식;허종수
    • 한국환경농학회지
    • /
    • 제25권1호
    • /
    • pp.14-24
    • /
    • 2006
  • 자연정화공법에 의한 농촌 전원 독립가구 하수처리장치의 적정 설치방법을 결정하기 위하여 호기성조와 혐기성조로 구성된 소형 하수처리장치를 설계 및 시공하였다. 소형 하수처리장치에서 여재 깊이에 따른 수처리 효율을 조사한 결과 호기성조와 혐기성조 모두 여재의 깊이가 깊어질수록 수처리 효율이 증가함으로 여재의 깊이를 90 cm이상으로 하는 것이 좋을 것으로 판단된다. 소형 하수처리장치의 최적 깊이인 90 cm하에서 호기성조 대 혐기성조 비율에 따른 수처리 효율을 조사한 결과 모든 여재에서 1 : 2 및 1 : 3의 호기 혐기 비율이 1 : 1에 비해 약간 높은 경향이었다. 따라서 소형 하수처리장치에서의 최적조건은 여재의 깊이는 90 cm이었고, 호기 혐기 비율은 1 : 2의 비율이었으며, 최적 여재는 왕사와 쇄석이었으며, 최적조건하에서 수처리효율은 BOD가 $97{\sim}99%$, COD가 $87{\sim}97%$, SS가 $88{\sim}99%$, T-N이 $57{\sim}68%$ 및 T-P가 $96{\sim}99%$이었다. 따라서 이러한 조건을 자연정화공법을 이용한 하수처리장치에 적용하면 하수처리장치의 부지면적을 최대한 줄이면서 높은 하수처리효율을 유지할 수 있을 것으로 판단된다.

Performance of foam fractionator in seawater recirculating system

  • Lei Peng;Jo, Jae-yoon
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2003년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.221-222
    • /
    • 2003
  • Typically, closed production system units are subject to an accumulation of fine suspended solids and dissolved organics (Weeks et at., 1992). Foam fractionation process is believed to be most effective in marine application for solids removal. In present experiment, the performance of foam fractionator for removal of solids, protein, and other dissolved materials was evaluated at different foam overflow heights and air flow rates in a pilot-scale recirculating aquaculture system for culture of Korean rockfish. (omitted)

  • PDF

Aqeous Neutralizer as Reactive Solvents for Odorous Ammonia Removal

  • Park, Young-G.
    • Environmental Engineering Research
    • /
    • 제13권3호
    • /
    • pp.119-124
    • /
    • 2008
  • Ammonia is an inorganic compound that may cause severe odor problem. In this study the effectiveness of applying natural neutralizer to destroy and remove the odor-causing compound from gas streams was studied. Experimental result evaluated with a bench-scale apparatus via the neutralization of gas phase. This indicates that the natural neutralization depends on the gas concentration, gas residence time, temperature and pH. Removal efficiency of ammonia from gas stream was achieved by 95% using theconvection in the packed bed. This study proved the chemical neutralization technology was effective for controlling inorganic odor-causing compound.

천연 유기산을 이용한 배관 스케일 세정제 성능에 관한 연구 (A Study on the Performance of Pipe Scale Cleaner using Natural Organic Acid)

  • 강형석;양원석;김영일;김선혜;최동희
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.530-537
    • /
    • 2017
  • Scales generated inside pipes cause negative effects on heat transfer performance, pressure loss and flow rate due to increased thermal resistance and reduced flow cross-sectional area. If these scales are not prevented or eliminated, thermal-fluid performance of the facilities can be deteriorated, or in extreme cases, accidents such as explosion due to overheating can occur. There are two ways to remove the scales, physically and chemically. Removing the scales physically needs specific machines which are expensive, and removing them chemically may provoke corrosion or shorten the age of the facilities. In this study, an eco-friendly pipe scale cleaner using natural organic acid is developed by applying the concept of a limestone cave generation. The manufactured scale cleaner is applied to remove the scales in industrial, water heating and urinal pipes. The results show that this cleaner removes scales more effectively and safely compared to existing scale treatments. Scale removal efficiencies of this work is 1.2~10.7 times for industrial pipes and 1.8~15.5 times for boiler water heating pipes higher than those of conventional cleaners.

강우유출수의 신속한 처리를 위한 고속응집시스템의 성능 평가 -실험실 규모 장치를 중심으로- (Performance Evaluation of Lab-scale High Rate Coagulation System for CSOs Treatment)

  • 권은미;오석진;조성주;이승철;하성룡;임채환;박지훈;강선홍
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.629-639
    • /
    • 2010
  • To evaluate the performance of high rate coagulation system(HRCS) for CSOs treatment, fundamental function of lab scale HRCS has been tested by using the Jar tester and lab scale HRCS. The optimum pH dose by Streaming Current value was found in the range of 5.3~6.0 in Fe(III), and in the range of 5.8~6.6 in Al(III) and the optimum chemical dose were 0.44mM of $Al_2(SO_4)_3$ and 0.93mM of $FeCl_3$. The removal efficiencies at optimum $Al_2(SO_4)_3$ dose were 75%($TCOD_{Cr}$), 97%(TP), 95%(SS) and 96%(turbidity), respectively. And the removal efficiency of particles with less than $5{\mu}m$ of diameter was 70% and that of particles with higher than $5{\mu}m$ of diameter was 90%. The optimum alum dose in lab scale HRCS was 150mg/L, and the treatment efficiency was the best with addition of 1.0mg/L polymer. The effect of Micro sand addition was not clear, because the depth of the sediment tank in lab scale HRCS was not long enough. But the HRT of this lab scale HRCS was able to be shorten less then 7 minutes by adding the micro sand. The surface loading rates with respect to using different chemicals were 0.43m/h with alum only, 5.78m/h with alum and polymer and 6.22m/h with alum, polymer and micro sand. As a result, HRCS using coagulant, polymer and micro sand developed in this study was evaluated to be very effective for CSOs treatment.

격벽에 의한 조분리와 내부반송을 이용한 산화구 시설의 고도처리개선에 관한 연구 (A Study on the Treatment of Nutrients and Organic Carbon in Wastewater through Spatial Separation and Internal Recycling in a Modified Oxidation Ditch)

  • 이영신;오대민
    • 한국환경보건학회지
    • /
    • 제37권1호
    • /
    • pp.64-72
    • /
    • 2011
  • This study was performed to assess the removal efficiency on nitrogen, phosphorus and organic carbon in wastewater by spatial separation and internal recycling in a modified oxidation ditch process (modified OD). The performances of the modified OD were evaluated via laboratory-scale experiments. The process was operated at hydraulic retention times of 6-48 hours and solid retention times of 17-38 days. We found that organic carbon removal efficiency increased after the modified OD operation period. T-N removal efficiency remained stable; average T-N concentration of effluent was 8.02 mg/l after modified OD operation. In contrast, T-P concentration of effluent was over 1 mg/l. Nitrogen and phosphorus removal efficiency of modified OD at HRT 12 hr were 83.1% and 74.1%, respectively. Also, maximum efficiency was found at SRTs from 20 to 30 days. T-N removal efficiency was 83.1% at a C/N ratio from 3.0 to 3.5. However, T-N removal efficiency decreased at C/N ratios over 3.5. Also, T-P removal efficiency increased with HRT at C/P ratios in the same condition. Maximum efficiency was 74.1% at a C/P ratio from 25 to 28. T-N removal efficiency was 79.2% and T-P removal efficiency was 65.3% after M4 mode operation (added to the internal recycle line connected to the anoxic reactor). The modified OD with spatial separation and internal recycling developed in this study is, therefore, believed to be an improvement for solving problems in the nutrient removal technologies.