• 제목/요약/키워드: scale formation

검색결과 1,224건 처리시간 0.029초

진공 막증류 공정의 스케일 막오염 형성에 관한 연구 (Scale formation on vacuum membrane distillation for SWRO brine treatment)

  • 황태문;장은경;남숙현;구재욱;김은주
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.311-319
    • /
    • 2017
  • Scale formation is inevitable problem when seawater is treated by vacuum membrane distillation. The reason is the high concentration of calcium ion($Ca^{2+}$), sulfate ion(${SO_4}^{2-}$) and bicarbonate ion(${HCO_3}^-$). These ions form calcium sulfate($CaSO_4$) and calcium carbonate($CaCO_3$) on the membrane. The scale formed on membrane has to be removed, because the flux can be severely reduced and membrane wetting can be incurred. This study was carried out to investigate scale formation and effectiveness of acid cleaning in vacuum membrane distillation for SWRO brine treatment. It was found that permeate flux gradually declined until volume concentration factor(VCF) reached around 1.55 and membrane wetting started over VCF over 1.6 in the formation of precipitates containing $CaSO_4$ during VMD operation. In contrast, when calcium carbonate formed on membrane, permeate flux was gradually reduced until VCF 3.0. The precipitates containing both $CaSO_4$ and $CaCO_3$ were formed on the membrane surface and in the membrane pore.

Large-Scale Environmental Effects on the Mass Assembly of Dark Matter Halos

  • 정인태;이재현;이석영
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.32.2-32.2
    • /
    • 2013
  • We examine large-scale environmental effects on the formation and the mass growth of dark matter halos. To facilitate this, we constructed dark matter halo merger trees from a cosmological N-body simulation, which enabled us to trace the merger information and the assembly history of individual halos. In fact, since the massive halos are more likely to be distributed in denser regions than in less dense regions (Mo & White, 1996), the large-scale environment dependence of the properties of halos can be partly originated from the halo mass effect. In order to avoid such contamination, caused by the mass dependence of halo properties, we carefully measured the local overdensity as the indicator of large-scale environment, which was calculated to be as independent of halo mass as possible. Small halos (${\sim}10^{11-12}M_{\odot}$), which usually host isolated single galaxies, show a notable difference on the formation time of galaxies depending on their large-scale environments, which reconfirms halo assembly bias (Gao & White, 2007). Furthermore, we investigate how this environmental effect on small halos is correlated with the mass assembly history of galaxies by using our semi-analytic model. We found that assembly bias in small halos does not have significant effects on the formation time or on the star formation history of galaxies residing in those halos except for the individual stellar mass of galaxies at z = 0. On average, isolated galaxies in high-density regions tend to be slightly more massive than those in low-density regions. Although the observational data from the current galaxy surveys is not yet sufficient for testing this prediction, future galaxy surveys will be able to explore these small galaxies more thoroughly.

  • PDF

파형벽면이 있는 채널 유동의 응집 구조 연구 (COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL)

  • 장경식
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.

A study of sub-galactic scale structure formation with a cosmological hydro code

  • 신지혜;김주한;김성수;윤석진
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • To study the formation and evolution of sub-galactic scale structures, we have added SPH (Smoothed Particle Hydrodynamics) method into an existing cosmological PMTree code, GOTPM. To follow the evolution of gas particles, we consider heating/cooling processes, star formation, and energy & metal feedback by supernova explosion. We have performed various tests for the new code and found that the results reproduce observed quantities or follow the known analytic solutions. We present a test simulation of isolated disk galaxy with a focus on whether the star formation reproduces the observed features.

  • PDF

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

빛 투과법을 이용한 평량과 지합의 인장 및 인열 강도에 미치는 영향 분석 (The Study of the Effects of Basis Weight and Formation on Tensile and Tear Strengths Using Light Transmitance Method)

  • 남원석;박종문
    • 펄프종이기술
    • /
    • 제30권3호
    • /
    • pp.57-62
    • /
    • 1998
  • This study is intended to analyze how formations affect the tensile and tear strengths of paper at the same basis weight. Light transmitance method using a scanner was employed to measure the degree of formation in terms of gray scale. Scanning method showed close relationship between gray scale value and basis weight. At the same basis weight a sheet of paper with good formation had higher tensile strength in terms of breaking length than that of a paper with poor formation. There was little difference in tear strength depending on formations.

  • PDF

Formation of First Astrophysical Objects under the Influence of Large-Scale Density and Velocity Environment

  • Ahn, Kyungjin;Smith, Britton D.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.55.5-55.5
    • /
    • 2019
  • We present our first attempt at understanding the dual impact of the large-scale density and velocity environment on the formation of very first astrophysical objects in the Universe. Following the recently developed quasi-linear perturbation theory on this effect, we introduce the publicly available initial condition generator of ours, BCCOMICS (Baryon Cold dark matter COsMological Inital Condition generator for Small scales), which provides so far the most self-consistent treatment of this physics beyond the usual linear perturbation theory. From a suite of uniform-grid simulations of N-body+hydro+BCCOMICS, we find that the formation of first astrophysical objects is strongly affected by both the density and velocity environment. Overdensity and streming-velocity (of baryon against cold dark matter) are found to give positive and negative impact on the formation of astrophysical objects, which we quantify in terms of various physical variables.

  • PDF

보일러 초음파 수처리장치의 신뢰성향상에 관한 연구 (A study on the reliability enhancement of Ultrasonic water treatment system to boiler)

  • 김대룡;이근오
    • 에너지공학
    • /
    • 제22권3호
    • /
    • pp.287-293
    • /
    • 2013
  • 이 논문은 보일러 운전중에 일어나는 결함요소의 하나인 스케일형성을 감소하기 위한 연구이다. 스케일의 결함은 보일러 튜브의 과열로 보일러 파열에 치명적인 영향을 미치거나, 보일러내부의 수의 순환 불량으로 내부의 물흐름에 영향을 미쳐 내부의 수의 불균등을 가져오기도 한다. 그리고 스케일은 보일러 재료보다 열전달이 되지 않음에 따른 에너지손실도 가져와 지구 온난화의 환경에 영향을 끼친다. 이러한 스케일의 형성을 방지하거나 제거하기 위하여 한국정부에서는 보일러수질관리를 위하여 2005년도에 스케일부착을 방지하거나 제거할 수 있는 장치를 시설하도록 하였다. 이러한 스케일형성 방지 및 제거하기 위한 기법에 관한 연구는 1821년 감자 전분에 의한 스케일형성 감소에 의한 연구를 시작으로 그 후 많은 연구가 있어왔다. 1994년 한국에 러시아 음향연구소의 한 과학자로부터 개발된 초음파 스케일 방지장치가 소개된 이래로 다양한 보일러에 보급되기 시작했다. 초음파 스케일방지 장치가 성능을 발휘할 수 있는 조건을 실증할 필요가 있다. 보일러는 대부분 원형 곡면의 본체와 튜브로 구성 되어 있다. 보일러의 구성 요소 중 스케일결함 가장영향을 많이 미치는 원통형에 대한 실증을 실시하였다. 그 결과 초음파의 일정음압과 주파수에 도달하여야 스케일형성에 영향을 미친다는 것을 확인할 수 있었다.

오리엔탈 백합의 인편 및 줄기의 박판 세포층 절편으로부터 고빈도 자구형성 (High Frequency Bulblet Formation in Scale and Stem Thin Cell Layer Explant Cultures of Lilium Oriental Hybrids)

  • 오승철;정명희;김석원;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제30권3호
    • /
    • pp.251-255
    • /
    • 2003
  • An efficient system for in vitro bulblet formation of Lilium oriental hybrids(cvs). Casa Blanca and Siberia is described. Transverse thin cell layer(tTCL)(1mm thick) explants of 'Casa Blanca' formed bulblets at a frequency of 97.7% when cultured on Murashige and Skoog (MS) medium supplemented with 1mg/L 2,4 dichlorophenoxyacetic acid(2,4-D) (On average 15.6 bulblets were formed per explant). The frequency of bulblet formation was drastically reduced when the explant ghickness was thinner than 1 mm. Explants from the outermost layer of bulb scale produced greater frequency of bulblet formation than middle or innermost layer. Among auxins supplemented to culture medium at 1 mg/L, 2,4-D led to greater frequency of bulblet formation on explants than dicamba, picamba, or phenylacetic acid(PAA). tTCL explants from the middle region of the outermost layer bulb scale yielded greater frequency of bulblet formation than the upper or lower region. tTCL stem explants of 'Siberia' formed bulblets at a frequency of 95.3% when cultured on MS medium with 1 mg/L 2,4-D(On average 9.1 bulblets were formed per explant). The system estabilished in this study will be useful for in vitro rapid propagation and genetic transformation of Lilium Oriental hybrids.

Nanosat Formation Flying Design for SNIPE Mission

  • Kang, Seokju;Song, Youngbum;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.51-60
    • /
    • 2020
  • This study designs and analyzes satellite formation flying concepts for the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE) mission, that will observe the near-Earth space environment using four nanosats. To meet the requirements to achieve the scientific objectives of the SNIPE mission, three formation flying concepts are analyzed: a cross-shape formation, a square-shape formation, and a cross-track formation. Of the three formation flying scenarios, the cross-track formation scenario is selected as the final scenario for the SNIPE mission. The result of this study suggests a relative orbit control scenario for formation maintenance and reconfiguration, and the initial relative orbits of the four nanosats meeting the formation requirements and thrust limitations of the SNIPE mission. The formation flying scenario is validated by calculating the accumulated total thrust required for the four nanosats. If the cross-track formation scenario presented in this study is applied to the SNIPE mission, it is expected that the mission will be successfully accomplished.