• 제목/요약/키워드: saturation flux density

검색결과 58건 처리시간 0.033초

A Coupled Circuit and Field Analysis of a Stand-Alone Permanent-Magnet Synchronous Generator with Inset Rotor

  • Chan T. F.;Yan Lie-Tong;Lai L. L.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.253-257
    • /
    • 2005
  • By using a coupled circuit, time-stepping, two-dimensional finite element method (2-D FEM), the performance of a stand-alone permanent-magnet synchronous generator (PMSG) with inset rotor can be computed without involving the classical two-axis model. The effects of interpolar air gap length and armature resistance on the load characteristics are investigated. It is shown that the interpolar flux density, and hence the amount of voltage compensation, is affected by magnetic saturation. Validity of the coupled circuit and field analysis is confirmed by experiments on a prototype generator. The machine exhibits an approximately level load characteristic when it is supplying an isolated unity-power-factor load.

한국형 고속전철용 견인전동기의 포화현상에 따른 특성연구 (A Study on The characteristics based on the stauration effects of traction motor for korea High Speed Train)

  • 이상우;김근웅;윤종학;한성수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.360-367
    • /
    • 1999
  • An inverter-driven induction motor is used as the traction motor for a high speed drive system that required safety, reliabillity, performance, compact size owing to the space and weight alloted for attaching to train, etc. particularly it is possible to happen the saturation effects of flux density at constant voltage-frequency region and then increase very higher than the at lowed capacity of no-load current and temperature in any case. therefore the optimum design of core, optimum voltage-frequency ratio, adoption of high grade magnetic core have been developed and researched for preventing these problems. this paper show the saturation effects of traction rotor by measuring the induced voltage of search coil at stator teeth and presents optimum voltage-frequency ratio as well as optimum core design through the comparison with efficiency, power factor, load current and no-load current for korea high speed train.

  • PDF

제상과정 해석을 위한 눈의 융해거동에 관한 수치적 연구 (Numerical Study on the Behavior of Snow Melting for the Analysis of Defrosting Procedure)

  • 이관수;박준상;김서영
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.599-608
    • /
    • 2000
  • One dimensional numerical modeling was carried out for the melting behavior of dry snow and the unsaturated flow when heat was supplied from the bottom surface. Discrepancy between the previous experimental data and the present numerical results is substantially reduced by considering the density change of water permeation layer due to the infiltration of meltwater. In the parametric study for effective thermal conductivity, it was found that the effect of this parameter to the behavior of snow melting is minor. Sensitivity analysis showed that the melting time is most sensitive to changes in supplied heat flux, snow temperature, and bulk density, whereas snow bulk density and residual saturation have a significant effect on the height of water permeation layer in snow.

  • PDF

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Insulation Coating of Fe-Si-Cr Soft Magnetic Powder by Selective Oxidation

  • Jae-Young Park;Kwangsuk Park;Bosung Seo;Julien O. Fadonougbo;Tae-Wook Na;Ki Beom Park;Hyeon-Tae Im;Nong-Moon Hwang;Hyung-Ki Park
    • Metals and materials international
    • /
    • 제28권
    • /
    • pp.1778-1782
    • /
    • 2021
  • This study examines the insulation coating technology of Fe-Si-Cr powder via selective oxidation annealing, which oxidizes elements selectively by controlling the oxidation potential. The study calculated the oxidation driving force of Fe, Si, and Cr, and conducted a thermodynamic analysis of oxidation and reduction conditions according to temperature and oxidation potential. Based on the results, a selective oxidation annealing was performed in an atmosphere in which Fe is reduced and only Si and Cr are selectively oxidized. The oxidation potential was controlled through the partial pressure ratio of hydrogen and water vapor. The XPS analysis results confirmed that a Si and Cr complex oxide layer formed on the powder surface after the selective oxidation annealing. Afterward, withstanding voltages were analyzed to evaluate the insulation property. Then, the withstanding voltage of the powder applying the selective oxidation annealing increased significantly compared to that of the initial powder. Further analysis showed that the powder annealed in an air atmosphere had a significantly lower saturation magnetic flux density than the initial powder, while the powder applying the selective oxidation annealing had only a slightly reduced saturation magnetic flux density.

자기 부상 방식 미세 운동 기구의 동적 모델링 (Dynamic Modeling of an Fine Positioner Using Magnetic Levitation)

  • 정광석;백윤수
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea;Kim, Sang Woo
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.105-110
    • /
    • 2013
  • The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.

전기자 반작용을 고려한 매입형 영구자석 동기전동기의 등가회로 해석 (Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Armature Reaction)

  • 정재우;이정종;권순오;홍정표;김기남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.756-757
    • /
    • 2008
  • Interior permanent magnet synchronous motor (IPMSM) which has high power density is usually applied to traction motor for hybrid electric vehicle. In order to analyze characteristics of IPMSM, d- and q-axis equivalent circuit analysis is generally used. However, the line current of IPMSM calculated by d- and q-axis equivalent circuit analysis differ from measured value. This error is mainly appeared under the flux weakening control. In order to reduce the error between calculated and measured line current, no-load linkage flux which is calculated with considering saturation of magnetic core and armature reaction is applied to characteristic analysis. The result of line current calculated by the method dealt with in this paper is verified by comparison with experimental results.

  • PDF

가열된 표면에 고착된 액적의 증발 특성에 관한 수치해석 연구 (Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces)

  • 정찬호;이형주;윤국현;이성혁
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2021
  • Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.