• Title/Summary/Keyword: saturated clay

Search Result 133, Processing Time 0.024 seconds

Use of the Quantitatively Transformed Field Soil Structure Description of the US National Pedon Characterization Database to Improve Soil Pedotransfer Function

  • Yoon, Sung-Won;Gimenez, Daniel;Nemes, Attila;Chun, Hyen-Chung;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Kang, Seong-Soo;Kim, Myung-Sook;Kim, Yoo-Hak;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.944-958
    • /
    • 2011
  • Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil structure description which is routinely recorded could also be used in PTF as an input to reduce the uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. We transformed categorical morphological descriptions of soil structure into quantitative values using categorical principal component analysis (CATPCA). This approach was tested with a large data set from the US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to quantify the uncertainty. Quantified morphological description was successively used in multiple linear regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression model with only the transformed morphological variables and structural index as predictors predicted the $K_{sat}$ with $r^2$ = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. Among structural descriptions size class turned out to be an important grouping parameter in the regression tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering technique, implying the morphologically described soil structural features are closely related to soil physical as well as hydraulic properties. Although this study provided relatively new method which related soil structure description to soil structure index, the same approach should be tested using a datasets containing the actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity and the soil water retention.

The Clay Mineralogy of some Low Productive Paddy Soils In Kyonggi-Do (경기도(京畿道) 저위생산답(低位生産畓)의 점토광물(粘土鑛物)에 관(關)한 연구(硏究))

  • Shim, Sang Chil;Kim, Tai Soon;Lee, Hyung Koo;Song, Ki Joon;Valencia, I.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.127-135
    • /
    • 1974
  • The samples were taken from the following localities previously classified as "Akiochi" area: Yangpyung, Puchun, and Pyungtaik, all of Kyonggi-do province. Five soil profiles were described in the field, and taken to the laboratory for physical and chemical analysis and mineralogical analysis by X-ray diffraction. The predominant clay minerals consist mainly of illite, vermiculite, chlorites and intergrade with vermiculite, and kaolinite. Illite or mica was found present in all samples and in all horizons. This was identified by the 9.83 to $10{\AA}$ (0.01) and $3.32{\AA}$ (003) basal reflections, Interhorizontal variations in mineral content and crystallinity are illustrated in their respective Xray diffractogram. Comparing the peak intensity, of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ indicated the degree of weathering from the surface to the lower horizons. In general, the weathering of illite on the surface produced less pronounced $10{\AA}$ and $14{\AA}$ peak as compared to the lower horizons. The same may be said with kaolinite. On K-saturation, the $14{\AA}$ peak broadening on the low angle side was observed. This is interpreted to be due to chlorization. Heat treament from $100^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, and $800^{\circ}C$. caused significant changes in the different diffractograms. Heating caused collasped of the $14{\AA}$ to $10{\AA}$ and the appearance of scattered peaks between $10-14{\AA}$. This is interpreted to the presence of vermiculite chlorite intergradient. The complete collapse of the $14{\AA}$ at $800^{\circ}C$ to $10{\AA}$ with increased intensity was attributed to the preservce of vermiculite. The principal difference among the clay minerals in each horizon is the concomitant increase and decrease in intensity with depth of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ diffraction spacings. Apparently the weathering of illite ($10{\AA}$) is resulting in the formation of vermiculite ($14{\AA}$) and the interstratified material being an intermediate stage and the beginning of the formation of vermiculite. Some broadening- in the 17 to $18{\AA}$ was observed in Puchun-1 Pyungtaik-1 and Pyungtaik-2 specially so in the lower horizon in the Ca or Mg-saturated sample. Heated treatment tend to shift this peak to $14{\AA}$ indicating the presence of regular layering of the interstratified complex. The high amount of extractable aluminum and iron coupled with low exchange capacity indicate that iron and aluminum plays an important role in the weathering of these soils and is responsible to the low exchange capacity, high acidity and high phosphate absorptive capacity. The results presented substantiated the weathering sequence of Jackson in that mica ${\rightarrow}$ vermiculite ${\rightarrow}$ chloritezed vermiculite ${\rightarrow}$ kaolinite.

  • PDF

Stress Path Dependent Deformation Characteristics of A Normally Consolidated Saturated Cohesive Soil (정규압밀 포화점성토의 응력경로에 따른 변형특성)

  • 권오엽;정인준
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.45-56
    • /
    • 1989
  • The influence of stress path on the deformation characteristics of clay has been studied through a series of stress-path controlled triaxial tests on artificially sedimented and normally con- solidated Kaolinite. It has been found that there exists a critical stress increment ratio, Kc, in which stress·strain characteristics possesses a linear relationships and beyond Kc, strain hardening. A modified hyperbolic constitutive model for the strain hardening behavior has been formulated based on the Drnevich's hyperbolic function. And, a method of settlement analyses has been Proposed wherein the effect of stress path during consolidation is taken into account.

  • PDF

Study on the development and application of slow releasing fertilizer using Korean natural clay minerals II. Synthesis and application of K-bentonite (점토광물을 이용한 완효성 비료(K비료)개발 및 응용에 관한 연구 II. 비료의 합성과 응용)

  • Park, Kuen-Woo;Choy, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.135-140
    • /
    • 1986
  • K-bentonite was made by ion exchange reaction in $K^{\ast}$ ion saturated aqueous solution. K-bentonite had a slow releasing effect in different soils such as sand, sandy loam and clayey loam, but the effect was the best in sand. The growth of radish and lettuce was better in the plot fertilized with K-bentonite than with KCl in sand culture in field condition. There was no effects on the growth of radish grown in pot in glass house. Vitamin C, nitrate content, thiocyanate ion content and dry weight of radish were not affected by K-bentonite and KCl in both pot and field culture. The commercial production of K-bentonite was discussed.

  • PDF

Estimation of Void Ratio by Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산정 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Jeong, Hun-Jun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.198-207
    • /
    • 2010
  • Many methods and techniques have been developed to obtain the accurate design parameters in soft soils. In particular, several researchers suggest the techniques to get the void ratio for understanding the soil behavior. The objective of this paper verifies the accuracy of the proposed analytical solution for determining the void ratio based on the elastic wave velocities. The paper covers the theories of Wood, Biot, Gassmann and Foti proposed chronological order. The total theory represents the wave propagation in fully saturated medium. To verify the proposed analytical solution, the laboratory and field tests are carried out. After measuring the elastic wave, the void ratios are assessed using proposed equation. The volume based void ratios are also obtained for comparing with the estimated value by several equations. The values estimated by volume, Gassmann and Biot are show good similarity. However, the void ratios based on Wood and Foti methods have a slightly different trend. This study suggests that the theories of Biot and Gassmann may be a useful equation for assessing the void ratio using elastic wave velocities in the field.

  • PDF

Soil water characteristic curve and improvement in lime treated expansive soil

  • Al-Mahbashi, Ahmed M.;Elkady, Tamer Y.;Alrefeai, Talal O.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.687-706
    • /
    • 2015
  • Methods commonly used to evaluate the improvement of lime-treated expansive soil include swelling characteristics and unconfined compressive strength. In the field, lime-treated expansive soils are in compacted unsaturated state. Soil water characteristic curves (SWCCs) represent a key parameter to interpret and describe the behavior of unsaturated expansive soil. This paper investigates the use of SWCC as a technique to evaluate improvements acquired by expansive soil after lime treatment. Three different lime contents were considered 2%, 4% and 6% by dry weight of clay. Series of tests were performed to determine the SWCC for the different lime content under curing periods of 7 and 28 day. Correlations between key features of the soil water characteristic curves of lime treated expansive soils and basic engineering behavior such as swelling characteristics and unconfined compression strength were established. Test results revealed that initial slope ($S_1$), saturated water content ($w_{sat}$), and air entry value (AEV) play an important role in reflecting improvement in engineering behavior achieved by lime treatment.

Studies on Heavy Clay Soil of Tile Drainage (찰진흙개간지의 암반비수에 관한 연구(I))

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1296-1300
    • /
    • 1967
  • This study was made through the utilization of heavy soil taken from the experimental plot of heavy soil in Konkuk University, Changan-dong, Sungdong-ku, Seoul. The soil used in the experiment has the following physical characteristics: 1. The soil is very compact, impervious, and unfit for any plant growth, 2. For improvement of the soil, tile drainage practice has been employed, 3. According to the general theory of tile drainage, it is unnatural that the effect of drainage is actually observed in such a soil. The followings are the results of the experiment: 1. Water moved to crosswise when the plotted soil profile was not broke. In this case the upper sloped part was dry while the bottom part was moistned. The upper part of the tile was also moistned. 2. The crosswise movement of water was not observed in the artificially broken plot of subsoil. However, the water flow from the tile was observed for long period as a result of the increase of soil void, seepage, aeration, and water holding capacity. However, the water flow from the tile in the plot of unbroken subsoil was observed only in short period and soon the flow was stopped. 3. the distance between the tile laid in the heavy soil should not exceed 10m for the efficient drainage. 4. When the pF is 2.5 in the subsoil the moisture content was between 23.97% and 28.20%. However, when the water saturated in the subsoil the moisture content was between 34.30% and 22.10%. Accordingly without the higher pF than 2.5 the water can not be absorbed and therefore the drainage can not be occured.

  • PDF

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

A study on the removal of heavy metals from soils using electrokinetic soil processing and ion exchange membrane (전기장과 이온교환막을 이용한 토양에서의 중금속 제거에 대한 연구)

  • 김순오
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • In order to remediate hazardous waste site, a process of electrokinetically purging chemicals from saturated soil is examined by laboratory experiments. Electrokinetic soil remediation is one of the most promising soil decontamination processes that habe igh removal efficiency and time-effectiveness in low-permeability soils such as clay. Being combined with several mechanisms-electromigration, elec troosmosis, diffusion and electrolysis of water, electrokinetic soil processing can remove non-polar organics as well as ionic contaminants. The objectives of this study are; 1) the exploration of the feasibility of electrokinetic soil processing on the removal of heavy metals, 2) the investigation of applicability to the tailing-soils in aban doned mining area, 3) the examination of effects of soil pH and conductivity on the transport phenomena of elements in soils, and 4) the investigation of the applicability of the ionexchange membrance to the efficient collection of heavy metals removed from contaminated soils. With the result of this study, it is suggested that the removal efficiency is significantly influenced by applied voltage & current, type of purging solutions, soil pH, permeability and zeta potentials of soil. Although further study should be needed, it is possible to collect removed heavy metals with ion-exchange membrance in cathode compartment.

  • PDF

The characteristics of leachate migration and corrosivity in municipal wastefills at seaside (해안 도시폐기물 매립지의 침출수 이동 특성 및 부식성)

  • Jang, Yeon-Su;Jeong, Ha-Ik;Kim, Jin-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.12a
    • /
    • pp.33-66
    • /
    • 1992
  • Recently, waste landfills built on seashores have been increased because of the easy availability of broad area near the urban communities. To evaluate the performance of the marine clay landfill liner numerical contaminant transport analyses are performed by selecting the typical section of a waste landfill built on seashores and using hydraulic conductivity data obtained from the site. Also, the laboratory electrical resistivity test and the in-situ corrosion test are performed in order to analyze the influence of the soil and leachates composing the landfills on the construct ion materials. From the results of contaminant transport analyses, it is shown that the leachates can be migrated faster through narrow pervious channels than the wide homogeneous pervious tedium and the importance of good quality barriers to prevent the contaminant migration is recognized. In the laboratory electrical resistivity test all the earth materials except the cover soils saturated with distilled water have small resistivities, which shows a high potential of corrosivity of soils composing landfills. However, the degree of corrosion of specimens buried in the landfills was not so severe except the zinc and carbon steel specimens. This apparently conflict results present the necessity of the investigation of other major factors and the long term in-situ corrosion test.

  • PDF