차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역 추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.
This study is to propose a sales forecasting framework for new products in the prelaunch phase where no saies data are available. For the purpose we first develop an extended Bass model with the dynamic market potential and then propose an estimation method based on the market survey and scenario methodology. The proposed parameter estimation method is different from previous studies in that most of them have only Proposed the management judgments or analogies. We also apply the proposed model to satellite DMB market in Korea to verify the model.
In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by electromagnetic simulation was used along with the Jahn's channel model, which is an experimental channel model. Based on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the performance improvement of array processing through array calibration was also examined.
KOMPSAT-3, 3A호의 운용 및 다양한 특성을 가지는 차세대중형위성의 발사에 따라서, 고해상도 위성영상의 활용이 지속적으로 증대되고 있다. 특히, ARD (Analysis Ready Data) 형태로의 위성영상 제공을 위하여 기하보정 및 방사보정 등의 다양한 전처리에 대한 연구가 이루어지고 있다. 위성영상의 전처리를 위해서는 촬영 영상에 관한 보조정보가 필요하며, 태양 천정각, 태양 방위각, 촬영각 등이 대표적인 자료이다. 그러나, 대부분의 고해상도 위성영상은 영상 전체에 대한 태양 천정각 및 촬영각을 단일 변수로 제공하고 있다. 본 연구에서는 RFM (Rational Function Model) 및 영상의 보조정보들을 이용하여 영상의 각 화소에 대응되는 태양 천정각 및 촬영각을 산출해보고, 이에 따른 품질을 평가해보고자 하였다. 특히, 화소 기반의 태양 천정각 및 촬영각의 활용을 위하여, 대기상부 반사율(top of atmospheric reflectance)을 산출함에 있어서, 화소 기반의 보조 자료를 적용하고, 단일 상수 기반의 대기상부 반사율과의 비교평가를 수행하였다. 실험 결과, 화소 기반의 태양 천정각 및 촬영각 정보는 보조정보와 유사한 경향을 보였으며, 이를 이용하여 계산된 대기상부 반사율은 왜곡이 감소되었음을 확인하였다.
We describe a method for the in-orbit calibration of body-mounted magnetometers based on the CHAOS-7 geomagnetic field model. The code is designed to find the true calibration parameters autonomously by using only the onboard magnetometer data and the corresponding CHAOS outputs. As the model output and satellite data have different coordinate systems, they are first transformed to a Star Tracker Coordinate (STC). Then, non-linear optimization processes are run to minimize the differences between the CHAOS-7 model and satellite data in the STC. The process finally searches out a suite of calibration parameters that can maximize the model-data agreement. These parameters include the instrument gain, offset, axis orthogonality, and Euler rotation matrices between the magnetometer frame and the STC. To validate the performance of the Python code, we first produce pseudo satellite data by convoluting CHAOS-7 model outputs with a prescribed set of the 'true' calibration parameters. Then, we let the code autonomously undistort the pseudo satellite data through optimization processes, which ultimately track down the initially prescribed calibration parameters. The reconstructed parameters are in good agreement with the prescribed (true) ones, which demonstrates that the code can be used for actual instrument data calibration. This study is performed using Python 3.8.5, NumPy 1.19.2, SciPy 1.6, AstroPy 4.2, SpacePy 0.2.1, and ChaosmagPy 0.5 including the CHAOS-7.6 geomagnetic field model. This code will be utilized for processing NextSat-1 and Small scale magNetospheric and Ionospheric Plasma Experiment (SNIPE) data in the future.
The detection of all the symbols transmitted simultaneously in multiuser systems using limited wireless resources is challenging. Traditional model-based methods show high performance with perfect channel state information (CSI); however, severe performance degradation will occur if perfect CSI cannot be acquired. In contrast, data-driven methods perform slightly worse than model-based methods in terms of symbol error ratio performance in perfect CSI states; however, they are also able to overcome extreme performance degradation in imperfect CSI states. This study proposes a novel deep learning-based method by improving a state-of-the-art data-driven technique called deep soft interference cancellation (DSIC). The enhanced DSIC (EDSIC) method detects multiuser symbols in a fully sequential manner and uses an efficient neural network structure to ensure high performance. Additionally, error-propagation mitigation techniques are used to ensure robustness against channel uncertainty. The EDSIC guarantees a performance that is very close to the optimal performance of the existing model-based methods in perfect CSI environments and the best performance in imperfect CSI environments.
The methods of the geometric reconstruction and sensor calibration of satellite linear pushbroom images are investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbit parameters, longitude of the ascending node(${\omega}$), inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. Time-dependent orbit parameters are expressed by quadratic polynomials. SPOT-5 images have been used for validation tests. The results are that the RMSE acquired from 20 GCPs is 1.763m and the RMSE of 5 checking points 2.470m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image using pushbroom camera.
In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.
COVID-19 사태로 인해 방송계는 여행 프로그램의 자취가 사라질 정도로 큰 영향을 받았다. 2022년부터 방송계에 여행 프로그램이 다시 기지개를 켜고 있으나 침체한 여행심리를 회복해야 하는 과제가 남아 있다. 본 연구는 여행 프로그램이 시청자의 여행 의도에 긍정적인 영향을 미친다는 연구를 토대로, 여러 채널을 통해 복수의 여행 프로그램을 송출하는 위성방송사의 방송 환경을 고려하여 여행 프로그램의 선호 부가정보를 시청자에게 제공하는 데이터서비스를 연구하였다. 구체적으로, 다양한 장르와 포맷의 여행 프로그램들을 대상으로 선호 부가정보를 조사하고, 위성방송사가 데이터서비스 형상을 결정할 때 사용할 수 있는 FODA 기반의 피처모델을 설계하였다. 또한, 피처모델을 기반으로 데이터서비스 운영에 필요한 정보들을 정의하고, 이를 국내 위성방송 표준인 DVB-S의 SI로 전송하는 방법을 고안하였다. 그리고 DVB-MHP 기반 데이터서비스 저작도구를 활용하여 데이터서비스 프로토타입을 구현함으로써 본 연구의 구현 가능성을 확인하였다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
/
pp.417-420
/
2006
In these days, mobile application dealing with information contents on mobile or handheld devices such as mobile communicator, PDA or WAP device face the most important industrial needs. The motivation of this study is the design and implementation of mobile application using high resolution satellite imagery, large-sized image data set. Although major advantages of mobile devices are portability and mobility to users, limited system resources such as small-sized memory, slow CPU, low power and small screen size are the main obstacles to developers who should handle a large volume of geo-based 3D model. Related to this, the previous works have been concentrated on GIS-based location awareness services on mobile; however, the mobile 3D terrain model, which aims at this study, with the source data of DEM (Digital Elevation Model) and high resolution satellite imagery is not considered yet, in the other mobile systems. The main functions of 3D graphic processing or pixel pipeline in this prototype are implemented with OpenGL|ES (Embedded System) standard API (Application Programming Interface) released by Khronos group. In the developing stage, experiments to investigate optimal operation environment and good performance are carried out: TIN-based vertex generation with regular elevation data, image tiling, and image-vertex texturing, text processing of Unicode type and ASCII type.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.