• Title/Summary/Keyword: satellite uplink

Search Result 59, Processing Time 0.023 seconds

WCDMA Simulator Engine for 3G Wireless Network

  • Rashld Zainol Abidin Abdul;Ramaiah Karamchand Babu Atchitha
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.3
    • /
    • pp.36-47
    • /
    • 2003
  • Wideband Code Division Multiple Access (WCDMA) is one of the air interface techniques proposed for the third generation (3G) mobile communication system. WCDMA was selected because it fulfills the IMT-2000 requirements for higher data rate trans mission, support of multimedia capabilities and other flexible services due to its variable bit rates and larger bandwidth, improved capacity and coverage, efficient power control and support for advanced and improved detector structures. Performance evaluation of 3G wireless network through simulation plays an important role in the design and implementation of the actual system, aiding the wireless system designer by providing them the necessary performance conformance statistics prior to implementation. In accordance with this goal, a simulator engine was developed entirely on a MATLAB platform to emulate the behaviour of the WCDMA air interface for both the uplink and downlink in a real world fading mobile environment. This paper discuss the development of the simulator along with a brief description of its functionalities and user interface. The WCDMA air interface mode focused in this paper is in accordance to the 3GPPs frequency division duplex (FDD) mode and restricted to the physical layer description. Performance results for the selected cases for the downlink, uplink, varying mobile velocity and sampling rates are also provided.

  • PDF

OVERALL LINK ANALYSIS ON HRIT AND LRIT IN COMS

  • Park Durk-Jong;Hyun Dae-Wan;Kang Chi-Ho;Ahn Sang-Il;Kim Eun-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.98-100
    • /
    • 2005
  • This paper describes link analysis on the processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), for the preliminary design of interface between COMS (Communication, Ocean and Meteorological Satellite) and ground station. At the MODAC (MeteorologicaVOcean Data Application Center), the processed data are transmitted to user station via COMS with normalization and calibration by pre-processing of MI (Meteorological Imager) data. Due to consider satellite as radio relay, overall analysis containing uplink and downlink is needed. Specific link parameters can be obtained with using the outcomes of SRR (System Requirement Review) which was held on 13-14 June 2005, in Toulouse. From the relation between overall link margin and output power of HPA (High Power Amplifier) of MODAC, it is shown that even though the minimum power related with COMS receiving power range is transmitted at MODAC, the obtained link margin of HRIT could be above 3 dB at user station which antenna elevation angle is 10 degree.

  • PDF

Modeling & Implementation of Operational Test and Evaluation, Offline Monitoring Software for Korea Augmentation Satellite System Uplink Station (한국형 위성항법 보정시스템 위성통신국 운용시험평가 오프라인감시 소프트웨어 모델링 및 구현)

  • Lee, Sanguk;You, Moonhee;Hyoung, Chang-Hee;Jeong, InCheol;Choi, SangHyouk;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.74-80
    • /
    • 2016
  • In this paper, the modeling and implementation results of the operational test and evaluation tool of the KASS up-link station composed of the GEO(Geostationary Earth Orbit) satellite signal analysis tool model that analyzes the GEO satellite signal and the GEO message analysis tool model that analyzes the GEO satellite navigation message. In addition, we describe the results of software modeling and implementation of some software models of GEO satellite and KASS up-link stations that can generate and provide simulated signals to operational test and evaluation tools of these KASS up-link stations.

5ft S-Band TT&C Antenna Test

  • Ahn Sang-il;Park Dong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • In early 2004, KARI developed 5ft S-Band TT&C antenna for especially KOMPSAT-2 operation in LEOP phase. This paper shows system features of 5ft S-Band antenna and its test result with KOMPSAT-l. Tracking test, command uplink test and telemetry downlink test were performed. Through tests, 5ft antenna was verified to be operational in uplink and downlink with KOMPSAT series. Due to its inherent wide 3dB beam-width of about 7deg at S-Band, this antenna system can be used very effectively even though orbital information is less accurate like LEOP and spacecraft safe mode.

  • PDF

KOMPSAT-2 RF COMPATIBILITY TEST FOR S-BAND

  • Cho Seung-Won;Youn Young-Su;Choi Jong-Yeon;Choi Seok-Weon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.344-346
    • /
    • 2004
  • KOMPSAT-2 (Korea Multi Purpose Satellite 2) which is scheduled to launch in 2005 year will communicate with KARI TTC (Tracking, Telemetry, and Command) station flying along sun synchronous orbits (685 km). The command from KARI TTC passes S-band omni-antenna, RF assembly, and transponder and finally reachs OBC (On Board Computer). The telemetry from KOMPSAT-2 arrives at KARI TTC through inverse procedure. In this paper, RF compatibility test between KOMPSAT-2 and KARI TTC station is demonstrated. RF interface for this test was established through real space and uplink signal test and downlink signal test and uplink & downlink signal test were performed.

  • PDF

Development of STSAT-2 Ground Station Baseband Control System (과학기술위성2호 지상관제를 위한 기저대역 제어 시스템 개발)

  • O, Seung-Han;O, Dae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.110-115
    • /
    • 2006
  • STSAT-2 is the first satellite which will be launched by the first Korean Space Launch Vehicle(KSLV). Ground station Baseband Control system(GBC) is now developed for STSAT-2. GBC has two functions. One is control data path between satellite control computers and ground station antennas(1.5M, 3.7M, 13M) automatically. The other is sending and receiving data between ground station and satellite. GBC is implemented by FPGA(Field-Programmable Gate Array) which includes almost all logic(for MODEM, PROTOCOL and GBC system control). MODEM in GBC has two uplink FSK modulators(1.2[kbps], 9.6[kbps]) and six downlink FSK demodulators(9.6[kbps], 38.4[kbps]). In hardware, STSAT-2 GBC is smaller than STSAT-1 GBC. In function, STSAT-2 GBC has more features than STSAT-1 GBC. This paper is about GBC structure, functions and test results.

Performance Evaluation of Direct Broadcasting Satellite Channel using a MC and QA Method (MC기법과 QA기법을 이용한 직접위성방송채널 성능평가)

  • 정지원;조형래;고성찬
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.839-847
    • /
    • 1999
  • This paper presents the performance evaluation of direct broadcasting satellite by monte-carlo(MC) and quasi-analytic(QA) simulation method in the existence of uplink/downlink adjacent channel interference(ACI), co-channel interference(CCI), and gaussian noise. Korea's satellite system parameters and link design are used at the simulation. MC and QA simulation methods are a valuable adjunct to analytical performance.

  • PDF

Development of a 2.8 GHz Local Oscillator for the Communication Satellite (인공위성용 2.8GHz 국부발전기에 관한 연구)

  • Seong Joon Kweon;Seong Kyu Lim;Sang Woong Lee;Keuk Whan Ra
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.58-67
    • /
    • 1994
  • In this paper, It was designed the 2.8GHz local oscillator which convert 14.5 14.8GHz uplink frequency to 11.7 12.0GHz downlink frequency by the receiving mixer on the communication satellite transponder according to the rating of domestic satellite. Mukunghwa 1. To prevent the variation of the communication channel bandwidth, it needs a high stability and low phase noise characteristics. So we designed to get the target frequencey by multipling the output signal from the crystal oscillator. We got the simplicity of the circuit by manufacturing the X4 multiplier with transistor which is ordinarily used as a device of a below X3 multiplier for the efficiency.

  • PDF

FLIGHT SOFTWARE DEVELOPMENT FOR THE KODSAT

  • Choi Eun-Jung;Park Suk-June;Kang Suk-Joo;Seo Min-Suk;Chae Jang-Soo;Oh Tae-Sik
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.364-367
    • /
    • 2004
  • This paper presents the flight software of KoDSat (KSLV-l Demonstration Satellite) which performs demonstrating the KSLV-l (Korea Space Launch Vehicle-l)'s satellite launch capability. The KoDSat Flight Software executes in a single-processor, multi-function flight computer on the spacecraft, the OBC (On Board Computer). The flight software running on the single processor is responsible for all real-time processing associated with: processor startup and hardware initialization, task scheduling, RS422 handling function, command and data handling including uplink command and down-link telemetry, attitude determination and control, battery state of charge monitoring and control, thermal control processing.

  • PDF

Playback Downlink and Telecommand Uplink Channel Design for Transportable KOMPSAT Ground Station (이동형 다목적실용위성 소형 관제국의 Playback 하향 링크 및 원격 명령 상향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.396-405
    • /
    • 2009
  • This paper describes playback downlink and telecommand uplink channel design performed for a transportable small-sized KOMPSAT(Korea Multi-Purpose Satellite) ground station. As a result of downlink channel design, required receiving performance was calculated from the threshold signal-to-noise ratio of playback signal and it was revealed that this performance can be guaranteed in 1.5 m ground station with 6.5 dB/K of G/T. For the uplink channel design, 40 dBW of EIRP was derived from the threshold signal-to-noise ratio of telecommand signal received at on-board receiver. The implemented small-sized ground station based on design was evaluated to be fully acceptable for KOMPSAT TT&C(Telemetry, Tracking and Command) system and playback downlink design without taking account of additional 3 dB system link margin was shown to be effective because it had provided constantly initial channel performance without any remarkable degradation over several years of tests with KOMPSAT and KOMPSAT-2, for both uplink and playback downlink in the elevation angle above $10^{\circ}$.