• Title/Summary/Keyword: satellite orbit determination

Search Result 195, Processing Time 0.029 seconds

Fuel-Optimal Altitude Maintenance of Low-Earth-Orbit Spacecrafts by Combined Direct/Indirect Optimization

  • Kim, Kyung-Ha;Park, Chandeok;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2015
  • This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.

Precision correction of satellite-based linear pushbroom-type CCD camera images (선형 CCD카메라 영상의 정밀 기하학적 보정)

  • 신동석;이영란;이흥규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.137-148
    • /
    • 1998
  • An algorithm developed for the precision correction of high resolution satellite images is introduced in this paper. In general, the polynomial warping algorithm which derives polynomial equations between GCPs extracted from an image and a base map requires many GCPs well-distributed over the image. The precision correction algorithm described in this paper is based on a sensor-orbit-Earth geometry, and therefore, it is capable of correcting a raw image using only 2-3 GCPs. This algorithm estimates the errors on the orbit determination and the attitude of the satellite by using a Kalman filter. This algorithm was implemented, tested and integrated into the KITSAT-3 image preprocessing software.

Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Son, Ju-Young;Park, Sun-youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of $GEO{\pm}200km$ and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.

The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 자이로 고전압 발생기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Accuracy Analysis of baseline determination using Broadcast ephemeris and Precise ephemeris in GPS surveying (방송력과 정밀력의 사용에 의한 GPS 측량의 정확도 분석)

  • Kim, Cheol-Young;Lee, Suk-Bae;Do, Sang-Gyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.149-157
    • /
    • 2009
  • The orbit ephemeris of Global Positioning System(GPS) is one element to determine the surveying accuracy and there are broadcasting ephemeris and precise ephemeris, IGS rapid orbit and IGS ultra rapid orbit in the orbit ephemeris of GPS. In this study, test area was selected in Uljin, Kyungsanbukdo and GPS surveying was accomplished at 37 points in the test area. Then baseline solution was done on 74 baseline using broadcasting ephemeris and precise ephemeris and analysis by TGO and the results were compared. Comparison results were showed that there were nearly no difference between the two results but in case of relative precision of the baseline, it was slightly better the baseline results of precise ephemeris which showed 0.706ppm than the baseline results of broadcasting ephemeris which showed 0.708ppm.

Gyroless Yaw Angle Compassing of Earth-Pointing Spacecraft Using Magnetic Sensor

  • Lee, Seon-Ho;Ahn, Hyo-Sung;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2055-2058
    • /
    • 2004
  • This paper formulates a yaw angle determination algorithm for earth-point satellite. The algorithm based on vector observation, is implemented with the limited vector measurements. The proposed algorithm doesn't require gyro measurement data but magnetic sensor measurement data. In order to confirm the usefulness of the proposed method, we investigate the simulated telemetry data of the KOMPSAT-2, a satellite that is scheduled to be launched into a 685km altitude sun synchronous circular orbit in 2005.

  • PDF

The Operational Procedure on Estimating Typhoon Center Intensity using Meteorological Satellite Images in KMA

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.278-281
    • /
    • 2006
  • Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.

  • PDF

KITSAT-3 Development and Initial Operations Results

  • Sungdong Park;Taejin Chung;Seorim Lee;Sangkeun Yoo;Hyunwoo lee;Yunhwang Jeong;Jachun Koo;Younghoon Shin;Kyunghee Kim
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.31-36
    • /
    • 1999
  • The development of a low earth orbit microsatellite is recognized as a good means of enhancing the technological capability, to gain experience and to train engineers to acquire knowledge and experience in space systems. Most developed countries in space technology do not allow the transfer of critical space technologies such as technology involved in attitude determination and control systems. And the export of critical components and equipment such as high precision attitude sensors is tightly controlled. Therefore it is inevitable to independently acquire self-design and manufacturing capability to implement a satellite mission. The KITSAT-3 program was aimed at verifying the capability to design, develop and operate an indigenous microsatellite system, which includes such critical technologies and associated components and equipment, as well as train engineers. KITSAT-3 was launched on May 26, 1999 using the Indian launcher PSLV-C2. The operations team has successfully performed a full functional checkout during the launch and early operations phase and the satellite is presently in a normal operations mode. This paper introduces the KITSAT-3 program and the results of the initial operations.

  • PDF

Dynamic Orbit Determination for Geostationary Satellite Broadcasting of Highly Accurate Standard Frequency/Time Signal (고정밀 표준 시각/주파수 신호의 위성방송 서비스를 위한 무궁화 위성의 실시간 위성궤도 결정 기술)

  • 이기훈;윤재철;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.331-337
    • /
    • 2002
  • In this paper we propose extended Kalman filter (EKF)-trilateration method which associates EKF to conventional radiolocation technique, trilateration in order to improve the accuracy of dynamic orbit determination of geostationary satellite for broadcasting of highly accurate Standard Time/Frequency Signal (STFS). We then compare to analyze the time accuracies of three techniques which are differential mode, trilateration locating one of four calibrated earth stations on a neighboring country, and domestic-only baseline EKF-trilateration. Computer simulations have shown that in spite of domestic-only baseline EKF-trilateration of poor GDOP, it is possible to track and locate satellite with an accuracy of a few hundred meter which is the performance 10 times more accurate than trilateration can provide. Finally we can provide standard time service with the time accuracy better than a few ns (frequency stability : 10$\^$-14/ over 7 days) all around Korea peninsula.