• Title/Summary/Keyword: satellite orbit

Search Result 1,156, Processing Time 0.03 seconds

ANGLES ONLY ORBIT DETERMINATION FROM SINGLE TRACKING STATION

  • Lee Byoung-Sun;Hwang Yoola
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.304-307
    • /
    • 2004
  • Satellite orbit determination using angles only data from single ground station is carried out. The KOMPSAT-1 satellite mono-pulse angle tracking data from 9-meter S-band antenna at KARI site in Daejeon are used for the orbit determination. Various angle tracking arcs from one-day to five-day are processed and the orbit determination results are analyzed. Antenna pointing data are predicted based on the orbit determination results to check the possibility of re-acquisition and tracking of the satellite signal. Normal satellite mission operations including orbit determination, antenna prediction, satellite re-acquisition and automatic tracking from predicted antenna angle pointing data are concluded to be possible when three-day angle tracking data from single tracking station are used for the orbit determination.

  • PDF

Design of Orbit Simulation Tool for Lunar Navigation Satellite System

  • Hojoon Jeong;Jaeuk Park;Junwon Song;Minjae Kang;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • Lunar Navigation Satellite System refers to a constellation of satellite providing PNT services on the moon. LNSS consists of main satellite and navigation satellites. Navigation satellites orbiting around the moon and a main satellite moves the area between the moon and the L2 point. The navigation satellite performs the same role as the Earth's GNSS satellite, and the main satellite communicates with the Earth for time synchronization. Due to the effect of the non-uniform shape of the moon, it is necessary to focus on the influence of the lunar gravitational field when designing the orbit simulation for navigation satellite. Since the main satellite is farther away from the moon than the navigation satellite, both the earth's gravity and the moon's gravity must be considered simultaneously when designing the orbit simulation for main satellite. Therefore, the main satellite orbit simulation must be designed through the three-body problem between the Earth, the moon, and the main satellite. In this paper, the orbit simulation tool for main satellite and navigation satellite required for LNSS was designed. The orbit simulation considers the environment characteristics of the moon. As a result of comparing long-term data (180 days) with the commercial program GMAT, it was confirmed that there was an error of about 1 m.

Orbit Determination System for the KOMPSAT-2 Using GPS Measurement Data

  • Lee, Byoung-Sun;Yoon, Jae-Cheol;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2325-2330
    • /
    • 2003
  • GPS based orbit determination system for the KOMPSAT-2 has been developed. Two types of orbit determination software such as operational orbit determination and precise orbit determination are designed and implemented. GPS navigation solutions from on-board the satellite are used for the operational orbit determination and raw measurements data such as C/A code pseudo-range and L1 carrier phase for the precise orbit determination. Operational concept, architectural design, software implementation, and performance test are described.

  • PDF

Analysis of Satellite Orbit Elements and Study of Constellation Methods for Micro-satellite System Operation (초소형위성체계 운용을 위한 위성궤도요소 분석 및 위성군 배치기법에 대한 고찰)

  • Soung Sub Lee;Jihae Son;Youngbum Song
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • This study analyzes considerations for satellite orbit elements for the national micro-satellite system to effectively perform its mission in accordance with the operational concept, and compares the conventionally used Walker method to improve the performance of the satellite constellation method of the repeating ground track orbit. In satellite orbit element analysis, altitude candidate values of micro-satellite system, use of eccentricity and argument of perigee through frozen orbit, necessity of selection of appropriate orbit inclination, and satellite phasing rules for flying the same repeating ground track orbit are proposed. Based on these analysis results, the superiority of the constellation method of the repeating ground track orbit compared to the Walker method is verified in terms of revisit performance analysis, global coverage characteristics, and orbit consistency.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

Design of an Elliptical Orbit for High-Resolution Optical Observation at a Very Low Altitude over the Korean Peninsula

  • Dongwoo Kim;Taejin Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.35-44
    • /
    • 2023
  • Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56°. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.

Analysis on the Impact of Space Environment on LEO Satellite Orbit (우주환경 변화에 따른 저궤도 위성의 궤도변화 분석)

  • Jung, Okchul;Yim, Hyeonjeong;Kim, Hwayeong;Ahn, Sangil
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • The satellite orbit is continuously changing due to space environment. Especially for low earth orbit, atmospheric drag plays an important role in the orbit altitude decay. Recently, solar activities are expected to be high, and relevant events are occurring frequently. In this paper, analysis on the impact of geomagnetic storm on LEO satellite orbit is presented. For this, real flight data of KOMPSAT-2, KOMPSAT-3, and KOMPSAT-5 are analyzed by using the daily decay rate of mean altitude is calculated from the orbit determination. In addition, the relationship between the solar flux and geomagnetic index, which are the metrics for solar activities, is statistically analyzed with respect to the altitude decay. The accuracy of orbit prediction with both the fixed drag coefficient and estimated one is examined with the precise orbit data as a reference. The main results shows that the improved accuracy can be achieved in case of using estimated drag coefficient.

OPERATIONAL ORBIT DETERMINATION USING GPS NAVIGATION DATA

  • Hwang Yoola;Lee Byoung-Sun;Kim Jaehoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.376-379
    • /
    • 2004
  • Operational orbit determination (OOD) depends on the capability of generating accurate prediction of spacecraft ephemeris in a short period. The predicted ephemeris is used in the operations such as instrument pointing and orbit maneuvers. In this study the orbit prediction problem consists of the estimating diverse arc length orbit using GPS navigation data, the predicted orbit for the next 48 hours, and the fitted 30-hour arc length orbits of double differenced GPS measurements for the predicted 48-hour period. For 24-hour orbit arc length, the predicted orbit difference from truth orbit was 205 meters due to the along-track error. The main error sources for the orbit prediction of the Low Earth Orbiter (LEO) satellite are solar pressure and atmosphere density.

  • PDF

A study on Propulsion Fuel consumption rate for orbit maintenance of LEO

  • 정도희;공창덕
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.10-10
    • /
    • 2000
  • For low Earth orbit, the atmosphere causes orbit altitude to decrease, If this decrease is not corrected by the satellite propulsive unit, the orbit decoys continuously unit reaches the dense atmosphere and satellite life ends. If active orbit maintenance is mode by satellite propulsive unit then fuel consumption is necessary, which must be considered in the satellite design. Especially interesting is the method for evaluating the fuel consumption role for maintenance of elliptical orbit developed in this paper.(omitted)

  • PDF

A study on the Technological Criteria for the Development of an Low Earth Orbit Meteorological Satellite (저궤도 기상위성 개발 기술 기준에 관한 연구)

  • Eun, Jong-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.116-121
    • /
    • 2012
  • For the purpose of drawing out the technological criteria for the development of an Low Earth Orbit Meteorological Satellite some characteristics of infrared and microwave sensors on the payload were analysed by approaching theoretically. In addition, the channel requirements and interface requirements of the microwave sensors equipped on the payloads of the existing foreign Low Earth Orbit Meteorological Satellites were analysed with respect to the development of an Earth Orbit Meteorological Satellite payload. In this paper, the multipurpose satellite bus and the CAS 500 platform as the interface requirements of an Low Earth Orbit Meteorological Satellite, and core subsystem and principle functional requirements of a satellite control system were systematically described.