• Title/Summary/Keyword: satellite images compression

Search Result 24, Processing Time 0.022 seconds

The Effect of Wavelet Pair Choice in the Compression of the Satellite Images (인공위성 영상 압축에 있어 웨이브렛 선택의 효과)

  • Jin, Hong-Sung;Han, Dong-Yeob
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.575-585
    • /
    • 2011
  • The effect of wavelet pair choice in the compression of the satellite images is studied. There is a trade-off between compression rate and perception quality. The encoding ratio is used to express the compression rate, and Peak Signal-to-Noise Ratio (PSNR) is also used for the perceptional performance. The PSNR and the encoding ratio are not matched well for the images with various wavelet pairs, but the tendency is remarkable. It is hard to find the pattern of PSNR for sampled images. On the other hand, there is a pattern of the variation range of the encoding ratio for each image. The satellite images have larger values of the encoding ratio than those of nature images (close range images). Depending on the wavelet pairs, the PSNR and the encoding ratio vary as much as 13.2 to 21.6% and 16.8 to 45.5%, respectively for each image. For Synthetic Aperture Radar (SAR) images the encoding ratio varies from 16 to 20% while for the nature images it varies more than 40% depending on the choice of wavelet pairs. The choice of wavelet for the compression affects the nature images more than the satellite images. With the indices such as the PSNR and the encoding ratio, the satellite images are less sensitive to the choice of wavelet pairs. A new index, energy concentration ratio (ECR) is proposed to investigate the effect of wavelet choice on the satellite image compression. It also shows that the satellite images are less sensitive than the nature images. Nevertheless, the effect of wavelet choice on the satellite image compression varies at least 10% for all three kinds of indices. However, the important of choice of wavelet pairs cannot be ignored.

Lossless Image Compression Using Block-Adaptive Context Tree Weighting (블록 적응적인 Context Tree Weighting을 이용한 무손실 영상 압축)

  • Oh, Eun-ju;Cho, Hyun-ji;Yoo, Hoon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2020
  • This paper proposes a lossless image compression method based on arithmetic coding using block-adaptive Context Tree Weighting. The CTW method predicts and compresses the input data bit by bit. Also, it can achieve a desirable coding distribution for tree sources with an unknown model and unknown parameters. This paper suggests the method to enhance the compression rate about image data, especially aerial and satellite images that require lossless compression. The value of aerial and satellite images is significant. Also, the size of their images is huger than common images. But, existed methods have difficulties to compress these data. For these reasons, this paper shows the experiment to prove a higher compression rate when using the CTW method with divided images than when using the same method with non-divided images. The experimental results indicate that the proposed method is more effective when compressing the divided images.

THE ANALYSIS OF THE INFLUENCE OF THE COMPRESSION ON THE LOW EARTH ORBIT SATELLITE PAYLOAD SYSTEM

  • Shin, Sang-Youn;Choi, Myung-Jin;Heo, Haeng-Pal;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.232-235
    • /
    • 2008
  • The mission of the EO(electro-optical) based low earth orbit satellite is provision of the high-resolution images required for GIS(Geographical Information Systems) establishment and the applications for environmental, agriculture and ocean monitoring. AEISS(Advanced Earth Imaging Sensor System) which is the main payload on the satellite consists of EOS(electro-optical subsystem) and PDTS(Payload Data Transmission Sub-system). IDHU(Image Data Handling Unit) which is one of the major unit in PDTS is capable of compression, storage, encryption and encoding. In this paper, the payload system of the EO based satellite is briefly introduced and the influence of the compression on AEISS is analyzed.

  • PDF

Compression of Stereo Endoscopic Images (스테레오 내시경 영상의 압축에 관한 연구)

  • An, J.S.;Kim, J.H.;Lee, S.J.;Choi, K.S.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.836-838
    • /
    • 1999
  • This paper describes stereo image compression algorithm using disparity and JPEG. because similar images are images with common features, similiar pixel distributions, and similar edge distributions. Fields such as medical imaging or satellite imaging often need to store large collections of similar images. that is, a conventional stereo system with a single left-right pair needs twice data as a monoscopic imaging system. as a result we need compression method compatible stereo image, in this paper after we use JPEG in basic compression method and stereo matching using adaptiv window, we get disparity information, we restored right image using by restored left image and disparity.

  • PDF

Multispectral image data compression using classified vector quantization (영역분류 벡터 양자화를 이용한 다중분광 화상데이타 압축)

  • 김영춘;반성원;김중곤;서용수;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.42-49
    • /
    • 1996
  • In this paper, we propose a satellite multispectral image data compression method using classified vector quantization. This method classifies each pixel vector considering band characteristics of multispectral images. For each class, we perform both intraband and interband vector quantization to romove spatial and spectral redundancy, respectively. And residual vector quantization for error images is performed to reduce error of interband vector quantization. Thus, this method improves compression efficiency because of removing both intraband(spatial) and interband (spectral) redundancy in multispectral images, effectively. Experiments on landsat TM multispectral image show that compression efficiency of proposed method is better than that of conventional method.

  • PDF

CCSDS 122.0-B-1 : An Image Compression Technology for High Resolution Satellites (CCSDS 122.0-B-1 : 고해상도위성의 영상압축 기술)

  • Seo, Seok-Bae;Koo, In-Hoi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.90-98
    • /
    • 2008
  • In recent, image data compression method of high resolution satellite image is the important issue for its application and development. The CCSDS (Consultative Committee for Space Data Systems) published a standard for the high resolution image data compression, CCSDS 122.0-B-1, in the end of 2005, which is expected to be widely applied in process of compression for the high resolution satellite images. In this paper, it is explained that the current trends of image compression methods for high resolution satellites, and then the comparison results between CCSDS 122.0-B-1 standard and JPEG are described.

  • PDF

DIGITAL WATERMARKING OF SATELLITE IMAGERY USING THE ALGORITHM BASED ON A LOOK-UP TABLE METHOD

  • Bang, Yoon-Sik;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.18-21
    • /
    • 2007
  • Digital image watermarking is a technology used in copyrighting of digital images by embedding unremovable informations. In this paper, a pixel-domain look-up-table-based watermarking algorithm is presented. With this methodology, the watermark was embedded in the host image, but we did not observe any distortion at certain specific region of interest. This means the proposed method is preferred in case of satellite images. Then, the image manipulation tool which is called 'StirMark' will be used to perform many kinds of attacks such as rotation, scaling, filtering and compression on the watermarked image. Finally, the effectiveness of a watermarking technique in terms of 'robustness' and 'data integrity' criteria will be measured by calculating PSNR of watermark and watermarked image.

  • PDF

New Compression Scheme for Multispectral Images

  • Park, Jeong-Ho;Yun, Young-Bo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.565-568
    • /
    • 1998
  • In this paper, we propose a new method for multispectral image compression that is based on highly correlated relational properly taken from a spatial image and its wavelet transform. The highly active regions, such as edges or contour, in the spatial domain are appeared as significant coefficients in the wavelet transform domain; and the low active regions like background as insignificant. These characteristics play an important role in designing the system. The simulation results have shown us that the proposed method has better performance in terms of the reconstructed image quality and the transmitted bit rakes. Practically, our system can be successfully applied to the application areas that require of progressive transmission. For some multispectral images with relatively low activity, we have obtained the more good results.

  • PDF

Lossless Color Image Compression using Inter-channel Correlation (채널 간 상관관계를 이용한 무손실 컬러 이미지 압축)

  • Kim, Se-Yun;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.962-968
    • /
    • 2011
  • The conventional lossless compression of color images is to apply a compression method to each of color components separately, without considering the channel correlation. There had been several methods that consider the channel correlation, but they were confined to the compression of satellite or aerial images only, and the performance of these algorithms to general photos is not satisfactory. This paper proposes a new lossless color image compression method that exploits the correlation between the color components. Specifically, asymmetric sampling is applied to transform an image into mosaic image and the rest, which are compressed separately. By using the information from the compressed mosaic image, the rest images are predicted for further reducing the information to be compressed. Experimental results show that the proposed method improves the compression performance by 35% over the conventional separate compression methods and 10% over the existing methods that exploit the channel correlation.