• Title/Summary/Keyword: satellite images

Search Result 1,879, Processing Time 0.027 seconds

SIEVING NONLINEAR INTERNAL WAVES IN SATELLITE IMAGES

  • Liu, Cho-Teng;Chao, Yen-Hsiang;Hsu, Ming-Kuang;Chen, Hsien-Wen
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.820-823
    • /
    • 2006
  • Nonlinear internal waves (NLIW) were studied as a unusual phenomena in the ocean decades ago. As the quality, quantity and variety of satellite images improve over decades, it is founded that NLIW is a ubiquitous phenomenon. Over the continental shelf of northern South China Sea (SCS), both optical and microwave images show that there are trains of NLIW packets near Dongsha Atoll (20.7N, 116.8E). Each packet contains several NLIW fronts. These NLIW packets are nearly parallel to each other and they are refracted, reflected or diffracted by the change of ocean bottom topography. Based on Korteweg de Vries (KdV) theory and the assumption that the bright/dark lines in the satellite images are centers of convergence/divergence of NLIW fronts, one may (1) sort NLIW packets in the same satellite image into groups of the same source, but generated at different tidal cycles, (2) relate NLIW packets in consecutive satellite images of one day apart, (3) locating faint signals of NLIW fronts in a satellite image. The NLIWs travel more than 100 km/day near Dongsha Atoll, with higher speed in deeper water. The bias and standard deviation of predicted location of NLIW front from its true location is about 1% and 5.1%, respectively.

  • PDF

Stereo matching for large-scale high-resolution satellite images using new tiling technique

  • Hong, An Nguyen;Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.517-524
    • /
    • 2013
  • Stereo matching has been grabbing the attention of researchers because it plays an important role in computer vision, remote sensing and photogrammetry. Although most methods perform well with small size images, experiments applying them to large-scale data sets under uncontrolled conditions are still lacking. In this paper, we present an empirical study on stereo matching for large-scale high-resolution satellite images. A new method is studied to solve the problem of huge size and memory requirement when dealing with large-scale high resolution satellite images. Integrating the tiling technique with the well-known dynamic programming and coarse-to-fine pyramid scheme as well as using memory wisely, the suggested method can be utilized for huge stereo satellite images. Analyzing 350 points from an image of size of 8192 x 8192, disparity results attain an acceptable accuracy with RMS error of 0.5459. Taking the trade-off between computational aspect and accuracy, our method gives an efficient stereo matching for huge satellite image files.

A Study on Urban Change Detection Using D-DSM from Stereo Satellite Data

  • Jang, Yeong Jae;Oh, Kwan Young;Lee, Kwang Jae;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.389-395
    • /
    • 2019
  • Unlike aerial images covering small region, satellite data show high potential to detect urban scale geospatial changes. The change detection using satellite images can be carried out using single image or stereo images. The single image approach is based on radiometric differences between two images of different times. It has limitations to detect building level changes when the significant occlusion and relief displacement appear in the images. In contrast, stereo satellite data can be used to generate DSM (Digital Surface Model) that contain information of relief-corrected objects. Therefore, they have high potential for the object change detection. Therefore, we carried out a study for the change detection over an urban area using stereo satellite data of two different times. First, the RPC correction was performed for two DSMs generation via stereo image matching. Then, D-DSM (Differential DSM) was generated by differentiating two DSMs. The D-DSM was used for the topographic change detection and the performance was checked by applying different height thresholds to D-DSM.

A Study on the Accuracy Estimation by Number of Control Points in High Resolution Images (고해상도 영상에서 기준점 개수에 따른 정확도 평가에 관한 연구)

  • Choi, Hyun;Kim, Gihong;Park, Hong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.309-316
    • /
    • 2018
  • The high-resolution satellite images provided by Kompsat-3A, a multipurpose satellite, have various applications such as digital map generation, 3D image generation, and DEM generation. In order to utilize high-resolution satellite images, the user must create an orthoimage in order to use the image in a suitable manner. The position and the number of the ground reference points affect the accuracy of the orthoimage. In particular, the Kompsat-3A satellite image has a high resolution of about 0.5m, so the difficulty in selecting the ground control points and the accuracy of the selected point will have a great influence on the subsequent application process. Therefore, in this study, we analyzed the influence of the number of ground reference points on the accuracy of the terrestrial satellite images.

Determination of Epipolar Geometry for High Resolution Satellite Images

  • Noh Myoung-Jong;Cho Woosug
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.652-655
    • /
    • 2004
  • The geometry of satellite image captured by linear pushbroom scanner is different from that of frame camera image. Since the exterior orientation parameters for satellite image will vary scan line by scan line, the epipolar geometry of satellite image differs from that of frame camera image. As we know, 2D affine orientation for the epipolar image of linear pushbroom scanners system are well-established by using the collinearity equation (Testsu Ono, 1999). Also, another epipolar geometry of linear pushbroom scanner system is recently established by Habib(2002). He reported that the epipolar geometry of linear push broom satellite image is realized by parallel projection based on 2D affine models. Here, in this paper, we compared the Ono's method with Habib's method. In addition, we proposed a method that generates epipolar resampled images. For the experiment, IKONOS stereo images were used in generating epipolar images.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio On MTF compensated EOC images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.202-207
    • /
    • 2002
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are generated and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used in MTF compensation for EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise power spectra ratio is the only factor in the determination of Wiener filter. In this paper, MTF compensation in IRPE at KGS is introduced and MTF compensated EOC 1R images are generated using Wiener filters with various signal-to-noise power spectra ratios. MTF compensated EOC 1R images are correlated with EOC 1R images for observing linearities between them. As a result, the effect of signal-to-noise power spectra ratio is shown on MTF compensated EOC 1R images.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Research and Application of Satellite Orbit Simulation for Analysis of Optimal Satellite Images by Disaster Type : Case of Typhoon MITAG (2019) (재난유형별 최적 위성영상 분석을 위한 위성 궤도 시뮬레이션 연구 및 적용 : 태풍 미탁(2019) 사례)

  • So-Mang, LIM;Ki-Mook, KANG;Eui-Ho, HWANG;Wan-Sik, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.210-221
    • /
    • 2022
  • In order to promptly respond to disasters, the era of new spaces has opened where satellite images with various characteristics can be used. As the number of satellites in operation at home and abroad increases and the characteristics of satellite sensors vary, it is necessary to find satellite images optimized for disaster types. Disaster types were divided into typhoons, heavy rains, droughts, forest fires, etc., and the optimal satellite images were selected for each type of disaster considering satellite orbits, active/passive sensors, spatial resolution, wavelength bands, and revisit cycles. Each satellite orbit TLE (Two Line Element) information was applied to the SGP4 (Simplified General Perturbations version 4) model to develop a satellite orbit simulation algorithm. The developed algorithm simulated the satellite orbit at 10-second intervals and selected an accurate observation area by considering the angle of incidence of each sensor. The satellite orbit simulation algorithm was applied to the case of Typhoon Mitag in 2019 and compared with the actual satellite list. Through the analyzed results, the time and area of the captured image and the image to be recorded were analyzed within a few seconds to select the optimal satellite image according to the type of disaster. In the future, it is intended to serve as a basis for building a system that can promptly request and secure satellite images in the event of a disaster.

Extracting High Quality Thematic Information by Using High-Resolution Satellite Imagery (고해상도 위성영상을 이용한 정밀 주제 정보 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.73-81
    • /
    • 2010
  • In recent years, there have been diverse researches and utilizations of creating geo-spatial information with high resolution satellite images. However thematic maps made with middle or low resolution satellite images have low location accuracy and precision of thematic information. This study set out to propose a method of making a precision thematic map with high resolution satellite images by examining the conversion from the conventional method based on middle or low resolution satellite images to the automatic method based on high resolution satellite images of GSD 1m or lower, extracting thematic information of middle or large scale of 1/5,000 or lower, and analyzing its accuracy. Seven classification classes were categorized according to the object-oriented classification in order to automatically extract thematic information with high resolution satellite images. And the classification results were compared and analyzed with the old middle scale land cover map and 1/1000 digital map.

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF