• 제목/요약/키워드: satellite images

검색결과 1,879건 처리시간 0.025초

A method on Digital Elevation Model Extraction Using Satellite Images

  • Ye, Soo-Chul;Jeon, Min-Byung;Lee, Kwae-Hi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.342-348
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding poults of them and third part is to calculate the elevation of each point by using the result of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. In the DEM generation system, this procedure holds most of a processing time, therefore a new fast matching algorithm is proposed to reduce the time for matching. The elevation of each point is calculated using the exterior orientation obtained from modeling and disparity from matching. In this paper, the SPOT satellite images, level IA 6000 $\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM. extraction with the satellite images.

  • PDF

Implementation of Satellite Imagery Information System for Korean Meteorological Administration

  • Chang, Eun-Mi;Park, Jong-Suh;Suh, Ae-Sook
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.229-236
    • /
    • 2007
  • Scattered satellite images were collected and converted from TDF to HDF as a standard format. We reviewed all the metadata on the images domestic and abroad and set up the metadata for the meteorological satellite images and naming rules in KMA. The satellite information search system that meteorological satellite images were in service with metadata for public and academic fields was implemented for quick search and download. This system will facilitate satellite images for various academic purposes beyond KMA and management functions of the system make routine workflow to manage satellite images in an ease and standardized way.

A Proposal for Processor for Improved Utilization of High resolution Satellite Images

  • Choi, Kyeong-Hwan;Kim, Sung-Jae;Jo, Yun-Won;Jo, Myung-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.211-214
    • /
    • 2007
  • With the recent development of spatial information technology, the relative importance of satellite image contents has increased to about 62%, the techniques related to satellite images have improved, and their demand is gradually increasing. Accordingly, a standard processing method for the whole process of collection from satellites to distribution of satellite images is required in many countries for efficient distribution of images and improvement of their utilization. This study presents the processor standardization technique for the preprocessing of satellite images including geometric correction, orthorectification, color adjustment, interpolation for DEM (Digital Elevation Model) production, rearrangement, and image data management, which will standardize the subjective, complex process and improve their utilization by making it easy for general users to use them

  • PDF

INTRODUCTION OF THE SIMC PROJECT

  • Chae, Gee-Ju;Cho, Seong-Ik;Park, Jong-Hyun;Jo, Kwan-Bok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.356-359
    • /
    • 2006
  • The high prices and lack of information for satellite images prevent researchers from studying remote sensing and most non-professional people can't have the simple and easy solutions for the manipulation of satellite images. 'Satellite Imagery Information Management Center'(SIMC) project which is promoted by ETRI (Electronics and Telecommunications Research Institute) from 2002 to 2005 in Korea have the purpose to provide the satellite images freely to the public domain and the solutions for the above mentioned problems. Our project have the following five systems; Data Acquisition System, Data Preservation System, Integrated Solution System, Technology Development System, Operation Plan System. Data Acquisition System collects the satellite images such as LANDSAT, IKONOS, etc. Data Preservation System consists of database which registers the diverse satellite images. Integrated Solution System gives the user of public domain for the web service which search, order and transfer the satellite images. Technology Development System has the many processing technologies for the satellite images. Finally, the Operation Plan system has the role to plan the future of our SIMC project. In this paper, we will give the result of SIMC Project for each five systems during the fast four years from 2002 to 2005.

  • PDF

DIRECT EPIPOLAR IMAGE GENERATION FROM IKONOS STEREO IMAGERY BASED ON RPC AND PARALLEL PROJECTION MODEL

  • Oh, Jae-Hong;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.860-863
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (2D Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

  • PDF

Direct Epipolar Image Generation From IKONOS Stereo Imagery Based On RPC and Parallel Projection Model

  • Oh, Jae-Hong;Shin, Sung-Woong;Kim, Kyung-Ok
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.451-456
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (20 Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

위성영상 이미지를 활용한 연구 동향 및 데이터셋 리뷰 (Research Trends and Datasets Review using Satellite Image)

  • 김세형;채정우;강주영
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.17-30
    • /
    • 2022
  • 기존 컴퓨터 비전의 연구 동향과 마찬가지로, 위성영상을 이용한 연구도 GPU 기반의 컴퓨터 연산능력과 이미지 처리와 관련된 딥러닝 방법론의 발전으로 많이 이루어지고 있다. 그로 인해 다양한 분야에 위성영상이 활용되고 있고, 위성 영상을 활용에 관한 연구도 증가하고 있다. 본 연구에서는 위성영상의 연구 활용 분야와 위성영상을 활용한 연구에 이용할 수 있는 데이터셋에 대해 소개하도록 한다. 먼저, 위성영상을 활용한 연구를 수집하여 연구 방법에 따라 분류하였다. 크게 분류 기반 연구와 회귀 기반 연구로 분류하였고, 그 이외의 방법으로 활용한 논문들을 정리하였다. 다음으로 위성영상을 활용한 연구들에서 이용한 데이터셋을 정리하였다. 본 연구에서는 데이터셋의 정보와 연구에서의 활용 방법에 대해 제안한다. 이와 함께 최근 AI hub에서 개방한 국내 위성영상 데이터셋의 정리와 활용 방안에 대해 소개한다. 마지막으로, 위성 이미지 관련 연구의 한계점과 앞으로의 동향을 간략하게 제시하였다.

위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘 (Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images)

  • 김재희;이찬구;박종원
    • 한국멀티미디어학회논문지
    • /
    • 제19권4호
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

고해상도 위성 영상데이터를 이용한 지형요소 추출에 관한 연구 (A Study on Feature Extraction Using High-Resolution Satellite Image Data)

  • 김상철;신석효;안기원;이건기;서두천
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.181-185
    • /
    • 2003
  • Recently, in accordance with supplying high-resolution satellite images which as IKONOS, KVR-1000, and Quick Bird, the use of satellite images have increased in the study which extraction of features from high-resolution satellite images is becoming a new research focus. In this study, using generally involves such as image segmentation, filtering and sobel operator and thinning in image processing for extraction of feature from satellite image. We apply this method to extraction of feature which need to the revision of map from high-resolution IKONOS satellite image data, we verified the capability of extraction of feature and application using satellite image and proposed a plan for the study in the future.

  • PDF