• Title/Summary/Keyword: satellite ground station

Search Result 285, Processing Time 0.029 seconds

Performance Analysis of Navigation Algorithm for GNSS Ground Station

  • Jeong, Seong-Kyun;Park, Han-Earl;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • Global Navigation Satellite System (GNSS) is been developing in many countries. The satellite navigation system has the importance in economic and military fields. For utilizing satellite navigation system properly, the technology of GNSS Ground Station is needed. GNSS Ground Station monitors the signal of navigation satellite and analyzes navigation solution. This study deals with the navigation software for GNSS Ground Station. This paper will introduce the navigation solution algorithm for GNSS Ground Station. The navigation solution can be calculated by the code-carrier smoothing method, the Kalman-filter method, the least-square method, and the weight least square method. The performance of each navigation algorithm in this paper is presented.

  • PDF

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

Ground Station Design for STSAT-3

  • Kim, Kyung-Hee;Bang, Hyo-Choong;Chae, Jang-Soo;Park, Hong-Young;Lee, Sang-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • Science and Technology Satellite-3 (STSAT-3) is a 150 kg class micro satellite based with the national space program. The STSAT-3 system consists of a space segment, ground segment, launch service segment, and various external interfaces including additional ground stations to support launch and early operation phases. The major ground segment is the ground station at the Satellite Technology Research Center, Korea Advanced Institute of Science and Technology site. The ground station provides the capability to monitor and control STSAT-3, conduct STSAT-3 mission planning, and receive, process, and distribute STSAT-3 payload data to satisfy the overall missions of STSAT-3. The ground station consists of the mission control element and the data receiving element. This ground station is designed with the concept of low cost and high efficiency. In this paper, the requirements and design of the ground station that has been developed are examined.

Determination of the Ground Station Locations for both Dual-Site Ranging and Site-Diversity at Q/V-band Satellite Communication for an Intersatellite System Scenario

  • Yilmaz, Umit C.;Cavdar, Ismail H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • Generally, Low Earth Orbit (LEO) satellites are used to collect image or video from earth's surface. The collected data are stored on-board and/or transmitted to the main ground station directly or via polar ground station using terrestrial line. Today, an intersatellite link between a LEO and a GEO satellite allows transmission of the collected data to the main ground station through the GEO satellite. In this study, an approach for a continuous communication starting from LEO through GEO to ground station is proposed by determining the optimum ground station locations. In doing so, diverse ground stations help to determine the GEO orbit as well. Cross-correlation of the long term daily rainfall averages are multiplied with the logarithmic correlation of the sites to calculate the joint correlation of the diverse ground station locations. The minimum values of this joint correlation yield the optimum locations of the ground stations for Q/V-band communication and satellite control operations. Results for several case studies are listed.

Design of Ground Station System for CubeSat STEP Cube Lab. (큐브위성 STEP Cube Lab.의 지상국 시스템 설계)

  • Jeon, Younghyeon;Chae, Bonggeon;Jeong, Hyeonmo;Jeon, Seongyong;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.34-39
    • /
    • 2012
  • CubeSats classified as pico-class satellite require a ground station to track the satellite, transmit a command, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. For this, ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

A Study on the Configuration and Operation Result of a Simple Ground Receiving Station for Satellite System Education (위성시스템 교육을 위한 간이 지상수신국 구성과 운용 결과)

  • Park, Joo-Won
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.113-128
    • /
    • 2021
  • In this paper, we present a simple ground receiving station as an educational method for a satellite system. Our system is produced similarly to the existing fixed ground station in terms of function by using satellite communication technology and related software commonly used in the amateur radio field. In addition, we conducted operation test to receive signals from operating satellites and confirmed the possibility of using them as a way to educate satellite systems, such as understanding ground station systems through satellite reception experience and satellite state information acquisition, and further designing satellite systems.

ANGLES ONLY ORBIT DETERMINATION FROM SINGLE TRACKING STATION

  • Lee Byoung-Sun;Hwang Yoola
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.304-307
    • /
    • 2004
  • Satellite orbit determination using angles only data from single ground station is carried out. The KOMPSAT-1 satellite mono-pulse angle tracking data from 9-meter S-band antenna at KARI site in Daejeon are used for the orbit determination. Various angle tracking arcs from one-day to five-day are processed and the orbit determination results are analyzed. Antenna pointing data are predicted based on the orbit determination results to check the possibility of re-acquisition and tracking of the satellite signal. Normal satellite mission operations including orbit determination, antenna prediction, satellite re-acquisition and automatic tracking from predicted antenna angle pointing data are concluded to be possible when three-day angle tracking data from single tracking station are used for the orbit determination.

  • PDF

Design of Ground Station System for CubeSat STEP Cube Lab. (큐브위성 STEP Cube Lab.의 지상국 시스템 개발)

  • Jeon, Younghyeon;Chae, Bonggeon;Jeong, Hyeonmo;Jeon, Seongyong;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • The CubeSats is classified as a pico-class satellite which requires a ground station to track the satellite, transmit commands, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. In order to this, the ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, a link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.