• Title/Summary/Keyword: satellite drop

Search Result 37, Processing Time 0.029 seconds

NUMERICAL STUDY OF THE DROPLET EJECTION BEHAVIOR OF NEWTONIAN AND SHEAR-THINNING FLUIDS (뉴튼유체와 전단희석유체의 액적분사 거동에 대한 수치해석적 연구)

  • Kim, E.;Baek, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically for Newtonian and shear-thinning fluid. The numerical simulation is performed using a volume-of-fluid model. In this study, we compare the printable range in terms of Z number and pinch-off time for Newtonian and shear-thinning fluids. The printability range are found to be 1.08 $$\leq_-$$ Z $$\leq_-$$ 12.9 for Newtonian fluid and 0.8 $$\leq_-$$ Z $$\leq_-$$ 12.9 for shear-thinning fluid. However, air entrainment is observed during merging of primary and satellite droplet within the printability range. The pinch-off time of the shear-thinning fluid is apparently shorter compared to the corresponding Newtonian fluid due to shear-thinning effects and the differences in the pinch-off time is enlarged significantly when the capillary number is larger than 0.5.

Water droplet generation technique for 3D water drop sculptures (3차원 물방울 조각 생성장치의 구현을 위한 물방울 생성기법)

  • Lin, Long-Chun;Park, Yeon-yong;Jung, Moon Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • This paper presents two new techniques for solving the two problems of the water curtain: 'shape distortion' caused by gravity and 'resolution degradation' caused by fine satellite droplets around the shape. In the first method, when the user converts a three-dimensional model to a vertical sequence of slices, the slices are evenly spaced. The method is to adjust the time points at which the equi-distance slices are created by the nozzle array. In this method, even if the velocity of a water drop increases with time by gravity, the water drop slices maintain the equal interval at the moment of forming the whole shape, thereby preventing distortion. The second method is called the minimum time interval technique. The minimum time interval is the time between the open command of a nozzle and the next open command of the nozzle, so that consecutive water drops are clearly created without satellite drops. When the user converts a three-dimensional model to a sequence of slices, the slices are defined as close as possible, not evenly spaced, considering the minimum time interval of consecutive drops. The slices are arranged in short intervals in the top area of the shape, and the slices are arranged in long intervals in the bottom area of the shape. The minimum time interval is pre-determined by an experiment, and consists of the time from the open command of the nozzle to the time at which the nozzle is fully open, and the time in which the fully open state is maintained, and the time from the close command to the time at which the nozzle is fully closed. The second method produces water drop sculptures with higher resolution than does the first method.

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

A Study for The Accuracy Assessment Method of Satellite Sensor Modeling (위성영상 센서모형화의 정확도 평가방법에 관한 연구)

  • Ko, Hyun-Soo;Choi, Chul-Soon;Hong, Jae-Min;Yoon, Chang-Rak
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.79-84
    • /
    • 2005
  • Recent researches about the accuracy assessment of the satellite sensor modeling usually focused on the quantitative analysis of errors. Quantitative error analysis contains its limitation that the distribution property of error can not be analyzed. The numerical evaluation of result of the satellite sensor modeling drop its confidence because of the absence of the distribution property of error. This study can be presented the distribution property of error to calculate RMSE and direction-coefficient of error. Moreover, Direction-coefficient which is closed to 1 s contains systematic errors. On the contrary, direction-coefficient which is closed to the zero contains random errors. To analyse the direction of errors, we will indicate that a formula is reduced the error.

  • PDF

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.

Rheological behavior and ink-jet printing characteristics of aqueous ceramic complex ink (수계 세라믹 복합잉크의 유변학적 거동 및 잉크젯 프린팅 특성)

  • Kwon, Jong-Woo;Lee, Jong-Heun;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.123-129
    • /
    • 2018
  • Ink-jet printing technology with ceramic ink of the four digital primary colors (cyan, magenta, yellow, and black; CMYK) can provide stable coloration even in the high-temperature firing process. Ceramic ink-jet printing can be widely applied in construction and ceramic industries due to the advantages of accurate and fast printing process of digital images for various products. Generally, organic solvent with proper viscosity and surface tension has been used in digital ink-jet printing process. However, the needs of ceramic ink without VOCs emission is increasing. In the present study, eco-friendly ceramic ink was synthesized by combining alumino boro-silicate glass frit and $CoAl_2O_4$ inorganic pigment based on an aqueous solvent that does not generate VOCs. The rheological properties and dispersion stability of aqueous ceramic ink were optimized. Jetting behavior and printing characteristics of the ceramic ink were also investigated in detail. As a result, the formulated aqueous ceramic complex ink showed a suitable jetting behavior without satellite drop by adjusting viscosity and surface tension. The ceramic ink can be printed on glass substrate with minimized spreading phenomena duo to high contact angle.

The role of Under-balcony Speaker in the Multimedia Environmental (멀티미디어 환경에서 언더발코니 스피커의 역할)

  • Song, Deog-Geun;Park, Eun-Jin;Lee, Seon-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.86-89
    • /
    • 2015
  • Formula acoustic characteristics of the room with a double layer, are compared through simulation and actual measurement. The rear area of the under- balcony speakers will cause a delay difference between the main speaker. In the mid / bass parts do not generate sufficient pressure is lowered and comb-Filtering phenomenon occurs significantly. The lower right area of the under- balcony speakers and speaker distance is the sound pressure of the under- balcony speakers to around 2 ~ 3m bigger than the main speakers and the sound image matches the pulpit is broken. Also, under area is more than 5 ~ 6m from the balcony outside speakers and causes differ by more than 10dB lower than the under- balcony speakers depending on the local laws of Translator wins Well, the main speaker at mid / high frequency sounds do not enter the sound pressure variations will drop by a significant. Appropriate arrangement and the output of the speaker according to the position under the balcony, and output of the main speakers are requested to minimize this problem sound. The proper sound design direction for the under- balcony speakers must be presented in order to improve the lower balcony area more pleasant acoustic environment.

A Study on Implementation and Performance Evaluation of Wideband Receiver for the INMARSAT-B Satellite Communications System (INMARSAT-B형 위성통신용 광대역 수신단 구현 및 성능평가에 관한 연구)

  • 전중성;임종근;김동일;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.166-172
    • /
    • 2001
  • A RF wideband receiver for INMARSAT-B satellite communications system was composed of low noise amplifier and high gain amplifier, The low noise amplifier used to the resistive decoupling circuit for input impedance matching and self-bias circuits for low noise. The high gain amplifier consists of matched amplifier type to improve receiver gain. The active bias circuit can be used to provide temperature stability without requiring the large voltage drop or relatively high-dissipated power needed with a bias stabilization resistor. The bandpass filter was used to reduce a spurious level. As a result, the characteristics of the receiver implemented here show more than 60 dB in gain and less than 1.8:1 in input and output voltage standing wave ratio(VSWR), especially the carrier to noise ratio which is input signal level -126.7 dB m at 1537.5 MHz is a 45.23 dB /Hz at a 1.02 kHz.

  • PDF

Scheduling Algorithm for Military Satellite Networks using Dynamic WDRR(Weighted Deficit Round Robin) (군사용 위성통신망을 위한 동적 WDRR기반의 스케줄링 알고리즘)

  • Lee, Gi-Yeop;Song, Kyoung-Sub;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.196-204
    • /
    • 2013
  • In this paper, a scheduling algorithm is proposed for military satellite networks to improve QoS(Quality of Service) based on WDRR(Weighted Deficit Round Robin) method. When the packet size that has been queued to be larger, the proposed scheme DWDRR(Dynamic WDRR) method give appropriate additional quantum using EWMA(Exponentially Weighted Moving Average). To demonstrate an usefulness of proposed algorithm using OPNET modeler that built the simulation environment, reliability and real-time availability of the proposed algorithm is analyzed. The simulation results show an availability of proposed scheme in terms of reduce queuing delay and packet drop rate compared and analyzed the existing algorithms WRR(Weighted Round Robin), DRR(Deficit Round Robin) and WDRR with DWDRR.

A Study on Fabrication and Performance Evaluation of Wideband Receiver using Bias Stabilized Resistor for the Satellite Mobile Communications System (바이어스 안정화 저항을 이용한 이동위성 통신용 광대역 수신단 구현 및 성능 평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.569-577
    • /
    • 1999
  • A wideband RF receiver for satellite mobile communications system was fabricated and evaluated of performance in low noise amplifier and high gain amplifier. The low noise amplifier used to the resistive decoupling and self-bias circuits. The low noise amplifier is fabricated with both the RF circuits and the self-bias circuits. Using a INA-03184, the high gain amplifier consists of matched amplifier type. The active bias circuitry can be used to provide temperature stability without requiring the large voltage drop or relatively high-dissipated power needed with a bias stabilized resistor. The bandpass filter was used to reduce a spurious level. As a result, the characteristics of the receiver implemented here show more than 55 dB in gain, 50.83 dBc in a spurious level and less than 1.8 : 1 in input and output voltage standing wave ratio(VSWR), especially the carrier to noise ratio is a 43.15 dB/Hz at a 1 KHz from 1537.5 MHz.

  • PDF