• Title/Summary/Keyword: satellite component

Search Result 271, Processing Time 0.022 seconds

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 인공위성 전장품의 구조진동 해석)

  • 박태원;정일호;한상원;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.768-771
    • /
    • 2003
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, electronic equipment (KOMPSAT 2, RDU : Remote Drive Unit) of a satellite consists of aluminum case containing PCB (Printed circuit boards). Each PCB has resistors and IC (Integrated circuits). Noise and vibration of wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation. random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when tile frequency of random vibration meets with natural frequency of PCB. fatigue fracture nay occur in the part of solder joint. The launching environment, thus. needs to be carefully considered when designing the electronic equipment of a satellite. In general. the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM(Finite Element Method) or vibration test. In this study. the natural frequency and dynamic deflection of PCB are measured by FEM, aud the safety of the electronic components of PCB is being evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs from the electronic equipments of a satellite to home electronics.

  • PDF

Performance Analysis of Nonlinear Satellite Communication System in the CCI And ACI Interference Channel (간섭채널에서 비선형 위성 통신 시스템의 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.166-173
    • /
    • 2004
  • Satellite communication system uses a high non-linear HPA(high power amplifiers) in the earth station and satellite transponder. Therefore, it is important to consider the nonlinear effect of HPA on the communication system. In this paper, we find the variation of power spectrum density by nonlinearity HPA and the change of harmonic component according to IBO (input back-off). When the BPSK is used for satellite communication system, we analyze BER performance including the external co-channel interference (CCI) and the adjacent channel interference (ACI) resulting from the HPA nonlinearity. BER degrades as ACI magnitude grows up when the uplink SNR, uplink SIR (signal to co-channel interference power ratio) and downlink SIR are constant at some level. In case there is only non-linear HPA in the satellite, it is shown that BER considerably depends on the ACI magnitude ACI. When there are two non-linear HPAs in the both earth station and satellite, much BER degradation results from the CCI and ACI.

The Optimization using PCB EM interpretation of GEO satellite's L Band Converter (정지궤도위성용 L대역변환반의 PCB EM 해석을 통한 최적화)

  • Kim, Ki-Jung;Ko, Hyeon-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1219-1226
    • /
    • 2013
  • This study is the analysis and verification process of the L-band satellite communications repeater thought PCB & circuit EM analysis. System performance can be vulnerable to various spurious inside the L-band satellite transponder, power conversion board, digital signal board, TM/TC board, such as control panels and blocks that are linked signal components when the winch is increased due to the noise component. So the whole system can cause performance degradation. PCB resonance analysis and EM simulation can be easily analyzed for a variety of optimal. Also, by setting the ports on the PCB, H/W designer wants to can easily analyze system.

Implementation of Real-Time Data Communication Component for Satellite Communication (위성통신을 위한 실시간 데이터 통신 컴포넌트의 구현)

  • Yun Hee-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1632-1639
    • /
    • 2004
  • The exist email program between Ship and Land has developed to reduce communication fee because of high satellite communication cost and low speed. Owing to this proper, the exist program has less flexibility and high speed. but to add or change functions is not easy. and it also have many difficulties for programmer to develop marine application because of delicate Satellite Radio communication. In this paper we design new protocol which consist of packet to give flexiblity and implement windows service program for programer to make marine applications easily like monitoring data, DB for Ship Management System, Planned Maintenance System.

Effective Admission Policy for Multimedia Traffic Connections over Satellite DVB-RCS Network

  • Pace, Pasquale;Aloi, Gianluca
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.593-606
    • /
    • 2006
  • Thanks to the great possibilities of providing different types of telecommunication traffic to a large geographical area, satellite networks are expected to be an essential component of the next-generation internet. As a result, issues concerning the designing and testing of efficient connection-admission-control (CAC) strategies in order to increase the quality of service (QoS) for multimedia traffic sources, are attractive and at the cutting edge of research. This paper investigates the potential strengths of a generic digital-video-broadcasting return-channel-via-satellite (DVB-RCS) system architecture, proposing a new CAC algorithm with the aim of efficiently managing real-time multimedia video sources, both with constant and high variable data rate transmission; moreover, the proposed admission strategy is compared with a well-known iterative CAC mainly designed for the managing of real-time bursty traffic sources in order to demonstrate that the new algorithm is also well suited for those traffic sources. Performance analysis shows that, both algorithms guarantee the agreed QoS to real-time bursty connections that are more sensitive to delay jitter; however, our proposed algorithm can also manage interactive real-time multimedia traffic sources in high load and mixed traffic conditions.

  • PDF

Ground-based and On-satellite Observations of Be and B Stars (인공위성관측과 지상관측에 의한 Be성과 B성의 연구)

  • 정장해
    • Journal of Astronomy and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 1988
  • Gamma Cassiopeae has been observe at Yonsei University Observatory(YUO) for 31 nights in the period 1983-1987 and a total of 312 UBV observations(104 in each colour) was secured. Light curves of ${\gamma}$ Cas in V, B-V, and U-B have been constructed with the YUO data; among them we present selected light curves of 5 different long nights. Discussed are the general photometric behaviour of ${\gamma}$ Cas, especially in connection with B-V changes, V/R variations of $H\alpha$ and H$\beta$, and high velocity narrow component(hvnc) exhibited in the far UV. Six spectral image sets of $\varepsilon$Per archived on IUE satellite are reduced and their line profiles in C IV and Si IV resonance lines are analyzed to find out any change, but the evidence is unlikely.

  • PDF

ANALYSIS OF THE CHARACTERISTICS ABOUT GYEONG-GANG FAULT ZONE THROUGH REMOTE SENSING TECHNIQUES

  • Hwang, Jin-Kyong;Choi, Jong-Kuk;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.196-199
    • /
    • 2008
  • Lineament is defined generally as a linear feature or pattern on interpretation of a satellite image and indicates the geological structures such as faults and fractures. For this reason, a lineament extraction and analysis using remote sensing images have been widely used for mapping large areas. The Gyeong-gang Fault is a NNE trending structure located in Gangwon-do and Kyeonggi-do district. However, a few geological researches on that fault have been carried out and its trace or continuity is ambiguous. In this study, we investigate the geologic features at Gyeong-gang Fault Zone using LANDSAT ETM+ satellite image and SRTM digital elevation model. In order to extract the characteristics of geologic features effectively, we transform the LANDSAT ETM+ image using Principal Component Analysis (PCA) and create a shade relief from SRTM data with various illumination angles. The results show that it is possible to identify the dimensions and orientations of the geologic features at Gyeong-gang Fault Zone using remote sensing data. An aerial photograph interpretation and a field work will be future tasks for more accurate analysis in this area.

  • PDF

Fault Tolerance Design of Uplink Command Processor (상향링크 명령 처리기의 결함 허용 설계)

  • Gu, Cheol Hoe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.95-100
    • /
    • 2003
  • Electronic equipment used in satellites are demanding extremely high reliability, so they should be designed to have immunity for some critical faults by using redundancy component. Generally, Communication satellites are assigned to meet the 15 years mission lifetime, of the analysis about faults must be performed to electronic equipments of satellite. This paper is a summary of the fault tolerance design research of command processor, the improvement of reliability and trade-off study of fault tolerance design result. The reliability prediction value of the satellite component used in this research was taken from Koreasat 3 and Kompsat 1. It is important to perform many trade-off studies for fault tolerance design, especially to choose the most proper fault tolerance method for the specified fault scenario.

The Detection of Yellow Sand with Satellite Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.403-406
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands. This algorithm is a hybrid algorithm that has used two methods combined. The first method used the differential absorption in brightness temperature difference between $11{\mu}m\;and\;12{\mu}m\;(BTD1)$. The radiation at $11{\mu}m$ is absorbed more than at $12{\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m\;and\;11{\mu}m(BTD2)$. This technique is sensitive to dust loading, which the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. First the Principle Component Analysis (PCA), a form of eigenvector statistical analysis from the two methods, is performed and the aerosol pixel with the lowest 10% of the eigenvalue is eliminated. Then the aerosol index (AI) from the combination of BTD 1 and 2 is derived. We applied this method to Multi-functional Transport Satellite-l Replacement (MTSAT-1R) data and obtained that the derived AI showed remarkably good agreements with Ozone Mapping Instrument (OMI) AI and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth.