• Title/Summary/Keyword: sapphire

Search Result 829, Processing Time 0.032 seconds

Development of a Non-contacting Capacitive Sensor Based on Thompson-Lampard Theorem for Measurement of ${\mu}m-order$ Displacements (Thompson-Lampard 정리를 적용한 마이크로미터 변위 측정을 위한 비접촉식 전기용량 센서 개발)

  • Kim, Han-Jun;Kang, Jeon-Hong;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.443-448
    • /
    • 2006
  • Non-contacting capacitive sensor based on Thompson-Lampard theorem have been fabricated and characterized for measuring of 때 order displacements. To overcome disadvantages of the existed capacitive sensors of parallel plate type with 2-electrodes and 3-electrodes, the developed new sensor was designed to have 4-electrodes with a constant gap of 0.2mm between the electrodes. Two of the electrodes were used as a high potential electrode and a low one, the other two electrodes were used as guard electrodes. These electrodes were made from copper using RF sputtering system on a sapphire plate with diameter 17 mm and thickness 0.7 mm. This sensor can be used for measuring the distance not only between the sensor and metallic target connected to ground potential but also non-metallic target without ground connection.

Effect of Variation of Substrate Temperature and Oxygen Gas Flow of the ZnO Thin Films Deposited on Sapphire (사파이어 기판 위에 증착된 ZnO 박막의 기판온도와 산소 가스량에 따른 특성)

  • Kim, Jae-Hong;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.652-655
    • /
    • 2005
  • ZnO thin films on (001) $Al_2O_3$ substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters, such as oxygen gas flow, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $300\~450^{\circ}C$ and oxygen gas flow rate of $100\~900$ sccm. We investigated the structural and optical properties of ZnO thin films using X-ray diffraction(XRD) and photoluminescence(PL).

The Analysis of Electrothermal Conductivity Characteristics for SOI(SOS) LIGBT with latch-up

  • Kim, Je-Yoon;Hong, Seung-Woo;Park, Sang-Won;Sung, Man-Young;Kang, Ey-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.129-132
    • /
    • 2004
  • The electrothermal characteristics of a high voltage LIGBT(Lateral Insulated Gate Bipolar Transistor) using thin silicon on insulator (SOI) and silicon on sapphire (SOS) such as thermal conductivity and sink is analyzed by MEDICI. The device simulations demonstrate that the thermal conductivity of the buried oxide is an important parameter for modeling of the thermal behavior of SOI devices. In this paper we simulated the thermal conductivity and temperature distribution of a SOI LIGBT with an insulator layer of SiO$_2$ and $Al_2$O$_3$ at before and after latch-up and verified that the SOI LIGBT with the $Al_2$O$_3$ insulator had good thermal conductivity and reliability.

Crystallization of IGZO thin film with spontaneously formed superlattice structure induced by Zno buffer layer (Zno 버퍼층을 이용한 자발적 초격자구조를 갖는 IGZO 박막의 결정화)

  • Seo, Dong-Kyu;Kong, Bo-Hyun;Cho, Hyoung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.4-4
    • /
    • 2010
  • Single-crystalline IGZO (Indium-Gallium-Zinc oxide) was fabricated on c-sapphire substrate. Single crystal ZnO was used as a buffer layer, and post-annealing was treated in $900^{\circ}C$ for crystallization of IGZO. Crystallized IGZO formed superlattice structure spontaneously induced to c-axis direction by ZnO butTer layer, the composition of IGZO was varied by amount of ZnO. Crystallinity and composition of IGZO was analyzed by X-ray Diffraction and Transmission Electron Microscopy.

  • PDF

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Structure and Electrical Properties of P-doped ZnO Thin Films with Annealing Temperatures (열처리 온도에 따른 P-doped ZnO 박막의 구조적 및 전기적 특성)

  • Han, Jung-Woo;Yoon, Yung-Sup;Kang, Seong-Jun;Joung, Yang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.501-502
    • /
    • 2008
  • In this study, P-doped ZnO thin films were prepared on sapphire substrates by pulsed laser deposition and annealing method. The electrical properties were investigated as a function of annealing temperatures at a fixed oxygen pressure. The XRD measurement showed that p-doped ZnO thin films were c-axis oriented. The Hall measurement showed that p-type ZnO thin film was observed. The carrier concentration of $1.18{\times}10^{16}cm^{-3}$ and the mobility of $0.96\;cm^{-3}/Vs$ were obtained for the P-doped ZnO thin film fabricated annealing temperature $850^{\circ}C$.

  • PDF

Electrical Characteristics of n-GaN Schottky Diode fabricated by using Electrochemical Metallization (Electrochemical Metallization방법을 이용한 GaN Schottky Diode의 제작과 전기적 특성 향상 및 분석)

  • ;Daejun Fu
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.205-208
    • /
    • 2001
  • Schottky barrier diodes are fabricated on a intrinsic GaN(4${\mu}{\textrm}{m}$) epitaxial structure grown by rf plasma molecular beam epitaxy (MBE) on sapphire substrates. First, We make Ohmic electrodes (Ti/Al/Ti/Au) by evaporator. Next, we contact RuO$_2$ by dipping in the solution (RuCl$_3$.HClO$_4$), and then we deposit Ni/Au on the surface of RuO$_2$ by evaporator. We study the electrical characteristics of GaN Schottky barrier diodes made by these methods. Measurements are C-V, I-V, SEM, EDX, and XRD for the characteristics of devices. Thickness of RuO$_2$ layer depends on supplied voltage and dipping time. Device of thinner RuO$_2$ layer have a good Schottky characteristics compare with device of thicker RuO$_2$ layer

  • PDF

Characterization of carrier-envelope-offset frequency of a femtosecond laser stabilized by the direct CEP locking method

  • Luu, Tran Trung;Lee, Jae-Hwan;Kim, Eok-Bong;Park, Chang--Yong;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • Characterics of carrier-envelope-offset frequency ($f_{ceo}$) of a femtosecond laser stabilized by the direct locking method were investigated using two f-to-2f interferometers. The stability of $f_{ceo}$ was comaparable to that achieved with a conventional PLL method.

  • PDF

Fully Analytic Approach to Evaluate Laser-induced Thermal Effects

  • Kim, Myungsoo;Kwon, Gyeong-Pil;Lee, Jinho
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.649-654
    • /
    • 2017
  • In this communication, we present an expression to determine thermal lensing in isotropic materials. The heat equation is analytically solved when a Gaussian spatial laser beam profile is introduced to a cylindrical geometry of optics using a complete set of Bessel functions. This expression permits explicit calculation of variation of focal length induced by thermal lensing and allows thermal effects for various material parameters on the optics. We applied our model to a high absorption material (Ti:sapphire) and also transparent material (thallium garnet or TGG) and found that the thermal lensing can be reduced more than 4 times by adjusting the laser beam waist and optics dimensions. Our analysis is completely general and applicable to any optical system.